000

Index Labels

Custom Memory Allocation in C++

.
For console development, memory is a very precious resource. You want good locality of reference and as little fragmentation of possible. You also want to be able to track the amount of memory used by different subsystems and eliminate memory leaks. To do that, you want to write your own custom memory allocators. But the standard ways of doing that in C++ leave a lot to be desired.

You can override global new and replace it with something else. This way you can get some basic memory tracking, but you still have to use the same allocation strategy for all allocations, which is far from ideal. Some systems work better with memory pools. Some can use simple frame allocation (i.e., pointer bump allocation).  You really want each system to be able to have its own custom allocators.

The other option in C++ is to override new on a per class basis. This has always has seemed kind of strange to me. Pretty much the only thing you can use it for are object pools. Global, per-class object pools. If you want one pool per thread, or one pool per streaming chunk -- you run into problems.

Then you have the STL solution, where containers are templated on their allocator, so containers that use different allocators have different types. It also has fun things such as rebind(). But the weirdest thing is that all instances of the allocator class must be equivalent. So you must put all your data in static variables. And if you want to create two separate memory pools you have to have two different allocator classes.

I must admit that every time I run into something in STL that seems completely bonkers I secretly suspect that I have missed something. Because obviously STL has been created by some really clever people who have thought long and hard about these things. But I just don't understand the idea behind the design of the custom allocator interface at all. Can any one explain it to me? Does any one use it? Find it practical? Sane?

If it weren't for the allocator interface I could almost use STL. Almost. There is also the pretty inefficient map implementation. And the fact that deque is not a simple ring buffer, but some horrible beast. And that many containers allocate memory even if they are empty... So my own version of everything it is. Boring, but what's a poor gal gonna do?

Back to allocators. In conclusion, all the standard C++ ways of implementing custom allocators are (to me) strange and strangely useless. So what do I do instead? I use an abstract allocator interface and implement it with a bunch of concrete classes that allocate  memory in different ways:


class Allocator
{
public:
    virtual void *allocate(size_t size, size_t align) = 0;
    virtual void deallocate(void *p) = 0;
    virtual size_t allocated_size(void *p) = 0;
}


I think this is about as sane as an allocator API can get. One possible point of contention is the allocated_size() method. Some allocators (e.g., the frame allocator) do not automatically know the sizes of their individual allocations, and would have to use extra memory to store them. However, being able to answer questions about allocation sizes is very useful for memory tracking, so I require all allocators to provide that information, even if it means that a frame allocator will have to use a little extra memory to store it.

I use an abstract interface with virtual functions, because I don't want to template my classes on the allocator type. I like my allocators to be actual objects that I can create more than one of, thank you very much. Memory allocation is expensive anyway, so I don't care about the cost of a virtual function call.

In the BitSquid engine, you can only allocate memory through an Allocator object. If you call malloc or new the engine will assert(false).

Also, in the BitSquid engine all allocators keep track of the total number of allocations they have made, and the total size of those allocations. The numbers are decreased on deallocate(). In the allocator destructor we assert(_size == 0 && _allocations == 0) and when we shut down the application we tear down all allocators properly. So we know that we don't have any memory leaks in the engine. At least not along any code path that has ever been run.

Since everything must be allocated through an Allocator, all our collection classes (and a bunch of other low-level classes) take an Allocator & in the constructor and use that for all their allocations. Higher level classes either create their own allocator or use one of the globals, such as memory_globals::default_allocator().

With this interface set, we can implement a number of different allocators. A HeapAllocator that allocates from a heap. A PoolAllocator that uses an object pool. A FrameAllocator that pointer bumps. A PageAllocator that allocates raw virtual memory. And so on.

Most of the allocators are set up to use a backing allocator to allocate large chunks of memory which they then chop up into smaller pieces. The backing allocator is also an Allocator. So a pool allocator could use either the heap or the virtual memory to back up its allocations.

We use proxy allocators for memory tracking. For example, the sound system uses:


ProxyAllocator("sound", memory_globals::default_allocator());


which forwards all allocations to the default allocator, but keeps track of how much memory has been allocated by the sound system, so that we can display it in nice memory overviews.

If we have a hairy memory leak in some system, we can add a TraceAllocator, another proxy allocator which records a stack trace for each allocation. Though, truth be told, we haven't actually had to use that much. Since our assert triggers as soon as a memory leak is introduced, and the ProxyAllocator tells us in which subsystem the leak occurred, we usually find them quickly.

To create and destroy objects using our allocators, we have to use placement new and friends:


void *memory = allocator.allocate( sizeof(MyClass), alignof(MyClass) );
MyClass *m = new (memory) MyClass(10);

if (m) {
    m->~MyClass();
    allocator.deallocate(m);
}


My eyes! The pain! You certainly don't want to type or read that a lot. Thanks C++ for making my code so pretty. I've tried to make it less hurtful with some template functions in the allocator class:


class Allocator
{
    template <class T, class P1> T *make_new(const P1 &p1) {return new (allocate(sizeof(T), alignof(T))) T(p1);}

    template <class T> void make_delete(T *p) {
        if (p) {
            p->~T();
            deallocate(p);
        }
    }


Add a bunch of other templates for constructors that take a different number of arguments that can be const or non-const and now you can at least write:


MyClass *m = allocator.make_new<MyClass>(10);

allocator.make_delete(m);


That's not too bad.

One last interesting thing to talk about. Since we use the allocators to assert on memory leaks, we really want to make sure that we set them up and tear them down in a correct, deterministic order. Since we are not allowed to allocate anything without using allocators, this raises an interesting chicken-and-egg problem: who allocates the allocators? How does the first allocator get allocated?

The first allocator could be static, but I want deterministic creation and destruction. I don't want the allocator to be destroyed by some random _exit() callback god knows when.

The solution -- use a chunk of raw memory and new the first allocator into that:



char _buffer[BUFFER_SIZE];

HeapAllocator *_static_heap = 0;
PageAllocator *_page_allocator = 0;
HeapAllocator *_heap_allocator = 0;

void init()
{
    _static_heap = new (_buffer)
        HeapAllocator(NULL, _buffer + sizeof(HeapAllocator), BUFFER_SIZE - sizeof(HeapAllocator));
          
    _page_allocator = _static_heap->make_new<PageAllocator>("page_allocator");
    _heap_allocator = _static_heap->make_new<HeapAllocator>("heap_allocator", *_page_allocator);
    ...
}

void shutdown()
{
    ...
    _static_heap->make_delete(_heap_allocator);
    _heap_allocator = 0;
  
    _static_heap->make_delete(_page_allocator);
    _page_allocator = 0;
  
    _static_heap->~HeapAllocator();
    _static_heap = 0;
}


Note how this works. _buffer is initialized statically, but since that doesn't call any constructors or destructors, we are fine with that. Then we placement new a HeapAllocator at the start of that buffer. That heap allocator is a static heap allocator that uses a predefined memory block to create its heap in. And the memory block that it uses is the rest of the _buffer -- whatever remains after _static_heap has been placed in the beginning.

Now we have our bootstrap allocator, and we can go on creating all the other allocators, using the bootstrap allocator to create them.

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ