000

Index Labels

Stingray Renderer Walkthrough #1: Overview

.
Stingray Renderer Walkthrough #1: Overview

Introduction

When we started writing Bitsquid back in mid 2009 all platforms we intended to run on were already multi-core architectures. This and the fact that we had some prior experience trying to get our last engine to run efficiently on the PS3 answered the question how not to architecture an efficient renderer that scales to many cores. We knew we needed more than functional parallelism, we wanted data-parallelism.

To solve that we divide the CPU view of a rendered frame into three stages:

  1. Culling - Filter out visible renderable objects with respect to a camera from a potentially huge set of different type of objects (meshes, particle systems, lights, etc).
  2. Render - Iterate over the filtered result from Culling and “record” an intermediate representation of draw calls/state switches to a command buffer.
  3. Dispatch - Take result from Render and translate that into actual render API calls (D3D, OGL, Metal, GNM, etc).

As you can see each stage pipes its result into the next. Rendering is typically very simple in that sense; we tend to have a one way flow of our data: [[user input or time affects state, state propagates into changes of the renderable objects (transforms, shader constants, etc), figure out what need to be rendered, iterate over that and finally generate render API calls. Rinse & Repeat :]]

If we ignore the problem of ordering the final API calls in the rendering backend it’s fairly easy to see how we can achieve data parallelism in this scenario. Just fork at each stage splitting the workload into a n-chunks (where n is however many worker threads you can throw at it). When all workers are done for a stage take the result and pipe into the next stage.

In essence this is how all rendering in Stingray works. Obviously I’ve glanced over some rather important and challenging details but as you will see they are not too hard to solve if you have good control over your data flows and are picky about when mutation of the data happens.

Design Philosophies & Concepts

The rendering code in Stingray tends to be heavily influenced by Data Oriented Programming principles. When designing new systems our biggest efforts usually goes into structuring our data efficiently and thinking about its flow through the systems, more so than writing the actual code that transforms the data from one form to another.

To achieve data-parallelism throughout the rendering code the first thing to realize is that we have to be very picky about when mutation of the renderable objects happens. Multiple worker threads will run over our objects and its not unlikely that more than one thread visits the same object at the same time, hence we must not mutate the state of our objects in its render function. Therefore all of our render() functions are const.

To further guard ourselves from the outer world (i.e gameplay, physics, etc) the renderer operates in complete isolation from the game logics. It has its own representation of the data it needs, and only the data relevant for rendering. While the gameplay logics usually wants to reason about high-level concepts such as game entities (which basically groups a number of meshes, particle systems, lights, etc together), we on the rendering side don’t really care about that. We are much more interested in just having an array of all renderable objects in a game world, in a memory layout that makes it efficient to access.

Another nice thing with decoupling the representation of the renderable objects from the game objects is that it allows us to run simulation in parallel with rendering (functional parallelism). So while simulation is updating frame n the renderer is processing frame n-1. Some of you might argue that overlaying rendering on top of simulation doesn’t give any performance improvements if the work in all systems is nicely parallelized. In reality though this isn’t really the case. We still have systems that don’t go wide, or have certain sections where they need to do synchronous processing (last generation graphics APIs: e.g DX11, OpenGL are good examples). This creates bubbles in the frame slowing us down.

By overlaying simulation and rendering we get a form of bubble filling among the worker threads which in most cases gives a big enough speed improvement to justify the added complexity that comes from this architecture. More specifically:

  1. Double buffering of state - since the simulation might mutate the state of an object for frame n at the same time as the renderer is processing frame n-1 any mutable state needs to be double buffered.
  2. Life scope tracking of immutable data - while immutable/read only state such as static vertex and index buffers are safe to read by both simulation and renderer we still need to be careful not pulling the rug under the renderers feet by freeing anything still being in use by the renderer.

Here’s a conceptual graph showing the benefits of overlaying simulation and rendering:

So basically what we got here is two “controller threads”: simulation and render both offloading work to the worker threads. In the case that a controller thread is blocked waiting for some work to finish it will assist the worker threads striving to never sit idle. One thing to note is that to prevent frames from stacking up, we never allow the simulation thread to run more than one frame ahead of the render thread.

As a comparison here’s the same workload with simulation and rendering running in sequence.

As you can see we get significantly more idle time (bubbles) on the worker threads due to certain parts of both the simulation and rendering not being able to go wide.

Next up

I think this pretty much covers the high level view of the core rendering architecture in Stingray. Now lets go into some more detail.

Since Andreas Asplund recently covered both how we handle propagation of state from simulation to the renderer (we call this “State reflection” in Stingray): http://bitsquid.blogspot.se/2016/09/state-reflection.html as well as how our view frustum culling system(s) works: http://bitsquid.blogspot.se/2016/10/the-implementation-of-frustum-culling.html I won’t be covering that in this series.

Instead I will jump straight into how creating and destroying GPU resources works, and from there go through all the building blocks needed to implement the second stage Render mentioned above.

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ