000

Index Labels

Stingray Renderer Walkthrough #8: stingray-renderer & mini-renderer

.
Stingray Renderer Walkthrough #8: stingray-renderer & mini-renderer

Introduction

In the last post we looked at our systems for doing data-driven rendering in Stingray. Today I will go through the two default rendering pipes we ship as templates with Stingray. Both are entirely described in data using two render_config files and a bunch of shader_source files.

We call them the “stingray renderer” and the “mini renderer”

Stingray Renderer

The “stingray renderer” is the default rendering pipe and is used in almost all template and sample projects. It’s a fairly standard “high-end” real-time rendering pipe and supports the regular buzzword features.

The render_config file is approx 1500 lines of sjson. While 1500 might sound a bit massive it’s important to remember that this configuration is highly configurable, pretty much all features can be dynamically switched on/off. It also run on a broad variety of different platforms (mobile -> consoles -> high-end PC), supports a bunch of different debug visualization modes, and features four different stereo rendering paths in addition to the default mono path.

If you are interested in taking a closer look at the actual implementation you can download stingray and you’ll find it under core/stingray_renderer/renderer.render_config.

Going through the entire file and all the implementation details would require multiple blog posts, instead I will try to do a high-level break down of the default layer_configuration and talk a bit about the feature set. Before we begin, please keep in mind that this rendering pipe is designed to handle lots of different content and run on lots of different platforms. A game project would typically use it as a base and then extend, optimize and simplify it based on the project specific knowledge of the content and target platforms.

Here’s a somewhat simplified dump of the contents of the layer_configs/default array found in core/stingray_renderer/renderer.render_config in Stingray v1.8:

// run any render_config_extensions that have requested to insert work at the insertion point named "first"
{ extension_insertion_point = "first" }

// kick resource generator for rendering all shadow maps
{ resource_generator="shadow_mapping" profiling_scope="shadow mapping" }

// kick resource generator for assigning light sources to clustered shading structure
{ resource_generator="clustered_shading" profiling_scope="clustered shading" }

// special layer, only responsible for clearing hdr0, gbuffer2 and the depth_stencil_buffer
{ render_targets=["hdr0", "gbuffer2"] depth_stencil_target="depth_stencil_buffer"
clear_flags=["SURFACE", "DEPTH", "STENCIL"] profiling_scope="clears" }

// if vr is supported kick a resource generator laying down a stencil mask to reject pixels outside of the lens shape
{ type="static_branch" platforms=["win"] render_settings={ vr_supported=true }
pass = [
{ resource_generator="vr_mask" profiling_scope="vr_mask" }
]
}

// g-buffer layer, bulk of all materials renders into this
{ name="gbuffer" render_targets=["gbuffer0", "gbuffer1", "gbuffer2", "gbuffer3"]
depth_stencil_target="depth_stencil_buffer" sort="FRONT_BACK" profiling_scope="gbuffer" }

{ extension_insertion_point = "gbuffer" }

// linearize depth into a R32F surface
{ resource_generator="stabilize_and_linearize_depth" profiling_scope="linearize_depth" }

// layer for blending decals into the gbuffer0 and gbuffer1
{ name="decals" render_targets=["gbuffer0" "gbuffer1"] depth_stencil_target="depth_stencil_buffer"
profiling_scope="decal" sort="EXPLICIT" }

{ extension_insertion_point = "decals" }

// generate and merge motion vectors for non written pixels with motion vectors in gbuffer
{ type="static_branch" platforms=["win", "xb1", "ps4", "web", "linux"]
pass = [
{ resource_generator="generate_motion_vectors" profiling_scope="motion vectors" }
]
}

// render localized reflection probes into hdr1
{ name="reflections" render_targets=["hdr1"] depth_stencil_target="depth_stencil_buffer"
sort="FRONT_BACK" profiling_scope="reflections probes" }

{ extension_insertion_point = "reflections" }

// kick resource generator for screen space reflections
{ type="static_branch" platforms=["win", "xb1", "ps4"]
pass = [
{ resource_generator="ssr_reflections" profiling_scope="ssr" }
]
}

// kick resource generator for main scene lighting
{ resource_generator="lighting" profiling_scope="lighting" }
{ extension_insertion_point = "lighting" }

// layer for emissive materials
{ name="emissive" render_targets=["hdr0"] depth_stencil_target="depth_stencil_buffer"
sort="FRONT_BACK" profiling_scope="emissive" }

// kick debug visualization
{ type="static_branch" render_caps={ development=true }
pass=[
{ resource_generator="debug_visualization" profiling_scope="debug_visualization" }
]
}

// kick resource generator for laying down fog
{ resource_generator="fog" profiling_scope="fog" }

// layer for skydome rendering
{ name="skydome" render_targets=["hdr0"] depth_stencil_target="depth_stencil_buffer"
sort="BACK_FRONT" profiling_scope="skydome" }
{ extension_insertion_point = "skydome" }

// layer for transparent materials
{ name="hdr_transparent" render_targets=["hdr0"] depth_stencil_target="depth_stencil_buffer"
sort="BACK_FRONT" profiling_scope="hdr_transparent" }
{ extension_insertion_point = "hdr_transparent" }

// kick resource generator for reading back any requested render targets / buffers to the CPU
{ resource_generator="stream_capture_buffers" profiling_scope="stream_capture" }

// kick resource generator for capturing reflection probes
{ type="static_branch" platform=["win"] render_caps={ development=true }
pass = [
{ resource_generator="cubemap_capture" }
]
}

// layer for rendering object selections from the editor
{ type="static_branch" platforms=["win", "ps4", "xb1"]
pass = [
{ type = "static_branch" render_settings={ selection_enabled=true }
pass = [
{ name="selection" render_targets=["gbuffer0" "ldr1_dev_r"]
depth_stencil_target="depth_stencil_buffer_selection" sort="BACK_FRONT"
clear_flags=["SURFACE" "DEPTH"] profiling_scope="selection"}
]
}
]
}

// kick resource generators for AA resolve and post processing
{ resource_generator="post_processing" profiling_scope="post_processing" }
{ extension_insertion_point = "post_processing" }

// layer for rendering LDR materials, primarily used for rendering HUD and debug rendering
{ name="transparent" render_targets=["output_target"] depth_stencil_target="stable_depth_stencil_buffer_alias"
sort="BACK_FRONT" profiling_scope="transparent" }

// kick resource generator for rendering shadow map debug overlay
{ type="static_branch" render_caps={ development=true }
pass = [
{ resource_generator="debug_shadows" profiling_scope="debug_shadows" }
]
}

// kick resource generator for compositing left/right eye
{ type="static_branch" platforms=["win"] render_settings={ vr_supported=true }
pass = [
{ resource_generator="vr_present" profiling_scope="present" }
]
}

{ extension_insertion_point = "last" }

So what we have above is a fairly standard breakdown of a rendered frame, if you have worked with real-time rendering before there shouldn’t be much surprises in there. Something that is kind of cool with having the frame flow in this representation and pairing that with the hot-reloading functionality of render_configs, is that it really encourages experimentations: move things around, comment stuff out, inject new resource generators, etc.

Let’s go through the frame in a bit more detail:

Extension insertion points

First of all there are a bunch of extension_insertion_point at various locations during the frame, these are used by render_config_extensions to be able to schedule work into an existing render_config. You could argue that an extensions system to the render_configs is a bit superfluous, and for an in-house game engine targeting a specific industry that might very well be the case. But for us the extension system allows building features a bit more modular, it also encourages sharing of various rendering features across teams.

Shadows

// kick resource generator for rendering all shadow maps
{ resource_generator="shadow_mapping" profiling_scope="shadow mapping" }

We start off by rendering shadow maps. As we want to handle shadow receiving on alpha blended geometry there’s no simple way to reuse our shadow maps by interleaving the rendering of them into the lighting code. Instead we simply gather all shadow casting lights, try to prioritize them based on screen coverage, intensity, etc. and then render all shadows into two shadow maps.

One shadow map is dedicated to handle a single directional light which uses a cascaded shadow map approach, rendering each cascade into a region of a larger shadow map atlas. The other shadow map is an atlas for all local light sources, such as spot and point lights (interpreted as 6 spot lights).

Clustered shading

// kick resource generator for assigning light sources to clustered shading structure
{ resource_generator="clustered_shading" profiling_scope="clustered shading" }

We separate local light sources into two kinds: “simple” and “custom”. Simple lights are either spot lights or point lights that don’t have a custom material graph assigned. Simple light sources, which tend to be the bulk of all visible light sources in a frame, get inserted into a clustered shading acceleration structure.

While simple lights will affect both opaque and transparent materials, custom lights will only affect opaque geometry as they run a more traditional deferred shading path. We will touch on the lighting a bit more soon.

Clearing & VR mask

// special layer, only responsible for clearing hdr0, gbuffer2 and the depth_stencil_buffer
{ render_targets=["hdr0", "gbuffer2"] depth_stencil_target="depth_stencil_buffer"
clear_flags=["SURFACE", "DEPTH", "STENCIL"] profiling_scope="clears" }

// if vr is supported kick a resource generator laying down a stencil mask to reject pixels outside of the lens shape
{ type="static_branch" platforms=["win"] render_settings={ vr_supported=true }
pass = [
{ resource_generator="vr_mask" profiling_scope="vr_mask" }
]
}

Here we use the layer system to record a bind and a clear for a few render targets into a RenderContext generated by the LayerManager.

Then, depending on if the vr_supported render setting is true or not we kick a resource generator that marks in the stencil buffer any pixels falling outside of the lens region. This resource generator only does something if the renderer is running in stereo mode. Also note that the branch above is a static_branch so if vr_supported is set to false the execution of the vr_mask resource generator will get eliminated completely during boot up of the renderer.

G-buffer

// g-buffer layer, bulk of all materials renders into this
{ name="gbuffer" render_targets=["gbuffer0", "gbuffer1", "gbuffer2", "gbuffer3"]
depth_stencil_target="depth_stencil_buffer" sort="FRONT_BACK" profiling_scope="gbuffer" }

{ extension_insertion_point = "gbuffer" }

// linearize depth into a R32F surface
{ resource_generator="stabilize_and_linearize_depth" profiling_scope="linearize_depth" }

// layer for blending decals into the gbuffer0 and gbuffer1
{ name="decals" render_targets=["gbuffer0" "gbuffer1"] depth_stencil_target="depth_stencil_buffer"
profiling_scope="decal" sort="EXPLICIT" }

{ extension_insertion_point = "decals" }

// generate and merge motion vectors for non written pixels with motion vectors in gbuffer
{ type="static_branch" platforms=["win", "xb1", "ps4", "web", "linux"]
pass = [
{ resource_generator="generate_motion_vectors" profiling_scope="motion vectors" }
]
}

Next we lay down the gbuffer. We are using a fairly fat “floating” gbuffer representation. By floating I mean that we interpret the gbuffer channels differently depending on material. I won’t go into details of the gbuffer layout in this post but everything builds upon a standard metallic PBR material model, same as most modern engines runs today. We also stash high precision motion vectors to be able to do accurate reprojection for TAA, RGBM encoded irradiance from light maps (if present, else irradiance is looked up from an IBL probe), high precision normals, AO, etc. Things quickly add up, in the default configuration on PC we are looking at 192 bpp for the color targets (i.e not counting depth/stencil). The gbuffer layout could use some love, I think we should be able to shrink it somewhat without losing any features.

We then kick a resource generator called stabilize_and_linerize_depth, this resource generator does two things:

  1. It linearizes the depth buffer and stores the result in an R32F target using a fullscreen_pass.
  2. It does a hacky TAA resolve pass for depth in an attempt to remove some intersection flickering for materials rendering after TAA resolve. We call the output of this pass stable_depth and use it when rendering editor selections, gizmos, debug lines, etc. We also use this buffer during post processing for any effects that depends on depth (e.g. depth of field) as those runs after AA resolve.

After that we have another more minimalistic gbuffer layer for splatting deferred decals.

Last but not least we kick another resource generator that calculates per pixel velocity for any pixels that haven’t been rendered to during the gbuffer pass (i.e skydome).

Reflections & Lighting

// render localized reflection probes into hdr1
{ name="reflections" render_targets=["hdr1"] depth_stencil_target="depth_stencil_buffer"
sort="FRONT_BACK" profiling_scope="reflections probes" }

{ extension_insertion_point = "reflections" }

// kick resource generator for screen space reflections
{ type="static_branch" platforms=["win", "xb1", "ps4"]
pass = [
{ resource_generator="ssr_reflections" profiling_scope="ssr" }
]
}

// kick resource generator for main scene lighting
{ resource_generator="lighting" profiling_scope="lighting" }
{ extension_insertion_point = "lighting" }

At this point we are fully done with the gbuffer population and are ready to do some lighting. We start by laying down the indirect specular / reflections into a separate buffer. We use a rather standard three-step fallback scheme for our reflections: screen-space reflections, falling back to localized parallax corrected pre-convoluted radiance cubemaps, falling back to a global pre-convoluted radiance cubemap.

The reflections layer is the target layer for all cubemap based reflections. We are naively rendering the cubemap reflections by treating each reflection probe as a light source with a custom material. These lights gets picked up by a resource generator performing traditional deferred shading - i.e it renders proxy volumes for each light. One thing that some people struggle to wrap their heads around is that the resource generator responsible for running the deferred shading modifier isn’t kicked until a few lines down (in the lighting resource generator). If you’ve paid attention in my previous posts this shouldn’t come as a surprise for you, as what we describe here is the GPU scheduling of a frame, nothing else.

When the reflection probes are laid down we move on and run a resource generator for doing Screen-Space Reflections. As SSR typically runs in half-res we store the result in a separate render target.

We then finally kick the lighting resource generator, which is responsible for the following:

  1. Build a screen space mask for sun shadows, this is done by running multiple fullscreen_passes. The fullscreen_passes transform the pixels into cascaded shadow map space and perform PCF. Stencil culling makes sure the shader only runs for pixels within a certain cascade.
  2. SSAO with a bunch of different quality settings.
  3. A fullscreen pass we refer to as the “global lighting” pass. This is the pass that does most of the heavy lifting when it comes to the lighting. It handles mixing SSR with probe reflections, mixing of SSAO with material AO, lighting from all simple lights looked up from the clustered shading structure as well as calculates sun lighting masked with the result from sun shadow mask (step 1).
  4. Run a traditional deferred shading modifier for all light sources that has a material graph assigned. If the shader doesn’t target a specific layer the lights proxy volume will be rendered at this point, else it will be scheduled to render into whatever layer the shader has specified.

At this point we have a fully lit HDR output for all of our opaque materials.

Various stuff

// layer for emissive materials
{ name="emissive" render_targets=["hdr0"] depth_stencil_target="depth_stencil_buffer"
sort="FRONT_BACK" profiling_scope="emissive" }

// kick debug visualization
{ type="static_branch" render_caps={ development=true }
pass=[
{ resource_generator="debug_visualization" profiling_scope="debug_visualization" }
]
}

// kick resource generator for laying down fog
{ resource_generator="fog" profiling_scope="fog" }

// layer for skydome rendering
{ name="skydome" render_targets=["hdr0"] depth_stencil_target="depth_stencil_buffer"
sort="BACK_FRONT" profiling_scope="skydome" }
{ extension_insertion_point = "skydome" }

// layer for transparent materials
{ name="hdr_transparent" render_targets=["hdr0"] depth_stencil_target="depth_stencil_buffer"
sort="BACK_FRONT" profiling_scope="hdr_transparent" }
{ extension_insertion_point = "hdr_transparent" }

// kick resource generator for reading back any requested render targets / buffers to the CPU
{ resource_generator="stream_capture_buffers" profiling_scope="stream_capture" }

// kick resource generator for capturing reflection probes
{ type="static_branch" platform=["win"] render_caps={ development=true }
pass = [
{ resource_generator="cubemap_capture" }
]
}

// layer for rendering object selections from the editor
{ type="static_branch" platforms=["win", "ps4", "xb1"]
pass = [
{ type = "static_branch" render_settings={ selection_enabled=true }
pass = [
{ name="selection" render_targets=["gbuffer0" "ldr1_dev_r"]
depth_stencil_target="depth_stencil_buffer_selection" sort="BACK_FRONT"
clear_flags=["SURFACE" "DEPTH"] profiling_scope="selection"}
]
}
]
}

Next follows a bunch of layers for doing various stuff, most of this is straightforward:

  • emissive - Layer for adding any emissive material influences to the light accumulation target (hdr0)
  • debug_visualization - Kick of a resource generator for doing debug rendering. When debug rendering is enabled, the post processing pipe is disabled so we can render straight to the output target / back buffer here. Note: This doesn’t need to be scheduled exactly here, it could be moved later down the pipe.
  • fog - Kick of a resource generator for blending fog into the accumulation target.
  • skydome - Layer for rendering anything skydome related.
  • hdr_transparent - Layer for rendering transparent materials, traditional forward shading using the clustered shading acceleration structure for lighting. VFX with blending usually also goes into this layer.
  • stream_capture_buffer - Arbitrary location for capturing various render targets and dumping them into system memory.
  • cubemap_capture - Capturing point for reflection cubemap probes.
  • selection - Layer for rendering selection outlines.

So basically a bunch of miscellaneous stuff that needs to happen before we enter post processing…

Post Processing

// kick resource generators for AA resolve and post processing
{ resource_generator="post_processing" profiling_scope="post_processing" }
{ extension_insertion_point = "post_processing" }

Up until this point we’ve been in linear color space accumulating lighting into a 4xf16 render target (hdr0). Now its time to take that buffer and push it through the post processing resource generator.

The post processing pipe in the Stingray Renderer does:

  1. Temporal AA resolve
  2. Depth of Field
  3. Motion Blur
  4. Lens Effects (chromatic aberration, distortion)
  5. Bloom
  6. Auto exposure
  7. Scene Combine (exposure, tone map, sRGB, LUT color grading)
  8. Debug rendering

All steps of the post processing pipe can dynamically be enabled/disabled (not entirely true, we will always have to run some variation of step 7 as we need to output our result to the back buffer).

Final touches

// layer for rendering LDR materials, primarily used for rendering HUD and debug rendering
{ name="transparent" render_targets=["output_target"] depth_stencil_target="stable_depth_stencil_buffer_alias"
sort="BACK_FRONT" profiling_scope="transparent" }

// kick resource generator for rendering shadow map debug overlay
{ type="static_branch" render_caps={ development=true }
pass = [
{ resource_generator="debug_shadows" profiling_scope="debug_shadows" }
]
}

// kick resource generator for compositing left/right eye
{ type="static_branch" platforms=["win"] render_settings={ vr_supported=true }
pass = [
{ resource_generator="vr_present" profiling_scope="present" }
]
}

Before we present we allow rendering of unlit geometry in LDR (mainly used for HUDs and debug rendering), potentially do some more debug rendering and if we’re in VR mode we kick a resource generator that handles left/right eye combining (if needed).

That’s it - a very high-level breakdown of a rendered frame when running Stingray with the default “Stingray Renderer” render_config file.

Mini Renderer

We also have a second rendering pipe that we ship with Stingray called the “Mini Renderer” - mini as in minimalistic. It is not as broadly used as the Stingray Renderer so I won’t walk you through it, just wanted to mention it’s there and say a few words about it.

The main design goal behind the mini renderer was to build a rendering pipe with as little overhead from advanced lighting effects and post processing as possible. It’s primarily used for doing mobile VR rendering. High-resolution, high-performance rendering on mobile devices is hard! You pretty much need to avoid all kinds of fullscreen effects to hit target frame rate. Therefore the mini renderer has a very limited feature set:

  • It’s a forward renderer. While it’s capable of doing per pixel lighting through clustered shading it rarely gets used, instead most applications tend to bake their lighting completely or run with only a single directional light source.
  • No post processing.
  • While all lighting is done in linear color space we don’t store anything in HDR, instead we expose, tonemap and output sRGB directly into an LDR target (usually directly to the back buffer).

The mini_renderer.render_config file is ~400 lines, i.e. less than 1/3 of the stingray renderer. It is still in a somewhat experimental state but is the fastest way to get up and running doing mobile VR. I also feel that it makes sense for us to ship an example of a more lightweight rendering pipe; it is simpler to follow than the render_config for the full stingray renderer, and it makes it easy to grasp the benefits of data-driven rendering compared to a more static hard-coded rendering pipe (especially if you don’t have source access to the full engine as then the hard-coded rendering pipe would likely be a complete black box for the user).

Wrap up

I realize that some of you might have hoped for a more complete walkthrough of the various lighting and post processing techniques we use in the Stingray renderer. Unfortunately that would have become a very long post and also it feels a bit out of context as my goal with this blog series has been to focus on the architecture of the stingray rendering pipe rather than specific rendering techniques. Most of the techniques we use can probably be considered “industry standard” within real-time rendering nowadays. If you are interested in learning more there are lots of excellent information available, to name a few:

In the next and final post of this series we will take a look at the shader and material system we have in Stingray.

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ