000

Index Labels

State reflection

.

Overview

The Stingray engine has two controller threads -- the main thread and the render thread. These two threads build up work for our job system, which is distributed on the remaining threads. The main thread and the render thread are pipelined, so that while the main thread runs the simulation/update for frame N, the render thread is processing the rendering work for the previous frame (N-1). This post will dive into the details how state is propagated from the main thread to the render thread.

I will use code snippets to explain how the state reflection works. It's mostly actual code from the engine but it has been cleaned up to a certain extent. Some stuff has been renamed and/or removed to make it easier to understand what's going on.

The main loop

Here is a slimmed down version of the update loop which is part of the main thread:

while (!quit())
{
// Calls out to the mandatory user supplied `update` Lua function, Lua is used
// as a scripting language to manipulate objects. From Lua worlds, objects etc
// can be created, manipulated, destroyed, etc. All these changes are recorded
// on a `StateStream` that is a part of each world.
_game->update();

// Flush state changes recorded on the `StateStream` for each world to
// the rendering world representation.
unsigned n_worlds = _worlds.size();
for (uint32_t i = 0; i < n_worlds; ++i) {
auto &world = *_worlds[i];
_render_interface->update_world(world);
}

// Begin a new render frame.
_render_interface->begin_frame();

// Calls out to the user supplied `render` Lua function. It's up to the script
// to call render on worlds(). The script controls what camera and viewport
// are used when rendering the world.
_game->render();

// Present the frame.
_render_interface->present_frame();

// End frame.
_render_interface->end_frame(_delta_time);

// Never let the main thread run more than 1 frame a head of the render thread.
_render_interface->wait_for_fence(_frame_fence);

// Create a new fence for the next frame.
_frame_fence = _render_interface->create_fence();
}

First thing to point out is the _render_interface. This is not a class full of virtual functions that some other class can inherit from and override as the name might suggest. The word "interface" is used in the sense that it's used to communicate from one thread to another. So in this context the _render_interface is used to post messages from the main thread to the render thread.

As said in the first comment in the code snippet above, Lua is used as our scripting language and from Lua things such as worlds, objects, etc can be created, destroyed, manipulated, etc.

The state between the main thread and the render thread is very rarely shared, instead each thread has its own representation and when state is changed on the main thread that state is reflected over to the render thread. E.g., the MeshObject, which is the representation of a mesh with vertex buffers, materials, textures, shaders, skinning, data etc to be rendered, is the main thread representation and RenderMeshObject is the corresponding render thread representation. All objects that have a representation on both the main and render thread are setup to work the same way:

class MeshObject : public RenderStateObject
{
};

class RenderMeshObject : public RenderObject
{
};

The corresponding render thread class is prefixed with Render. We use this naming convention for all objects that have both a main and a render thread representation.

The main thread objects inherit from RenderStateObject and the render thread objects inherit from RenderObject. These structs are defined as:

struct RenderStateObject
{
uint32_t render_handle;
StateReflection *state_reflection;
};

struct RenderObject
{
uint32_t type;
};

The render_handle is an ID that identifies the corresponding object on the render thread. state_reflection is a stream of data that is used to propagate state changes from the main thread to the render thread. type is an enum used to identify the type of render objects.

Object creation

In Stingray a world is a container of renderable objects, physical objects, sounds, etc. On the main thread, it is represented by the World class, and on the render thread by a RenderWorld.

When a MeshObject is created in a world on the main thread, there's an explicit call to WorldRenderInterface::create() to create the corresponding render thread representation:

MeshObject *mesh_object = MAKE_NEW(_allocator, MeshObject);
_world_render_interface.create(mesh_object);

The purpose of the call to WorldRenderInterface::create is to explicitly create the render thread representation, acquire a render_handle and to post that to the render thread:

void WorldRenderInterface::create(MeshObject *mesh_object)
{
// Get a unique render handle.
mesh_object->render_handle = new_render_handle();

// Set the state_reflection pointer, more about this later.
mesh_object->state_reflection = &_state_reflection;

// Create the render thread representation.
RenderMeshObject *render_mesh_object = MAKE_NEW(_allocator, RenderMeshObject);

// Pass the data to the render thread
create_object(mesh_object->render_handle, RenderMeshObject::TYPE, render_mesh_object);
}

The new_render_handle function speaks for itself.

uint32_t WorldRenderInterface::new_render_handle()
{
if (_free_render_handles.any()) {
uint32_t handle = _free_render_handles.back();
_free_render_handles.pop_back();
return handle;
} else
return _render_handle++;
}

There is a recycling mechanism for the render handles and a similar pattern reoccurs at several places in the engine. The release_render_handle function together with the new_render_handle function should give the complete picture of how it works.

void WorlRenderInterface::release_render_handle(uint32_t handle)
{
_free_render_handles.push_back(handle);
}

There is one WorldRenderInterface per world which contains the _state_reflection that is used by the world and all of its objects to communicate with the render thread. The StateReflection in its simplest form is defined as:

struct StateReflection
{
StateStream *state_stream;
};

The create_object function needs a bit more explanation though:

void WorldRenderInterface::create_object(uint32_t render_handle, RenderObject::Type type, void *user_data)
{
// Allocate a message on the `state_stream`.
ObjectManagementPackage *omp;
alloc_message(_state_reflection.state_stream, WorldRenderInterface::CREATE, &omp);

omp->object_type = RenderWorld::TYPE;
omp->render_handle = render_handle;
omp->type = type;
omp->user_data = user_data;
}

What happens here is that alloc_message will allocate enough bytes to make room for a MessageHeader together with the size of ObjectManagementPackage in a buffer owned by the StateStream. The StateStream is defined as:

struct StateStream
{
void *buffer;
uint32_t capacity;
uint32_t size;
};

capacity is the size of the memory pointed to by buffer, size is the current amount of bytes allocated from buffer.

The MessageHeader is defined as:

struct MessageHeader
{
uint32_t type;
uint32_t size;
uint32_t data_offset;
};

The alloc_message function will first place the MessageHeader and then comes the data, some ASCII to the rescue:

+-------------------------------------------------------------------+
| MessageHeader | data |
+-------------------------------------------------------------------+
<- data_offset ->
<- size ->

The size and data_offset mentioned in the ASCII are two of the members of MessageHeader, these are assigned during the alloc_message call:

template<Class T>
void alloc_message(StateStream *state_stream, uint32_t type, T **data)
{
uint32_t data_size = sizeof(T);

uint32_t message_size = sizeof(MessageHeader) + data_size;

// Allocate message and fill in the header.
void *buffer = allocate(state_stream, message_size, alignof(MessageHeader));
auto header = (MessageHeader*)buffer;

header->type = type;
header->size = message_size;
header->data_offset = sizeof(MessageHeader);

*data = memory_utilities::pointer_add(buffer, header->data_offset);
}

The buffer member of the StateStream will contain several consecutive chunks of message headers and data blocks.

+-----------------------------------------------------------------------+
| Header | data | Header | data | Header | data | Header | data | etc |
+-----------------------------------------------------------------------+

This is the necessary code on the main thread to create an object and populate the StateStream which will later on be consumed by the render thread. A very similar pattern is used when changing the state of an object on the main thread, e.g:

void MeshObject::set_flags(renderable::Flags flags)
{
_flags = flags;

// Allocate a message on the `state_stream`.
SetVisibilityPackage *svp;
alloc_message(state_reflection->state_stream, MeshObject::SET_VISIBILITY, &svp);

// Fill in message information.
svp->object_type = RenderMeshObject::TYPE;

// The render handle that got assigned in `WorldRenderInterface::create`
// to be able to associate the main thread object with its render thread
// representation.
svp->handle = render_handle;

// The new flags value.
svp->flags = _flags;
}

Getting the recorded state to the render thread

Let's take a step back and explain what happens in the main update loop during the following code excerpt:

// Flush state changes recorded on the `StateStream` for each world to
// the rendering world representation.
unsigned n_worlds = _worlds.size();
for (uint32_t i = 0; i < n_worlds; ++i) {
auto &world = *_worlds[i];
_render_interface->update_world(world);
}

When Lua has been creating, destroying, manipulating, etc objects during update() and is done, each world's StateStream which contains all the recorded changes is ready to be sent over to the render thread for consumption. The call to RenderInterface::update_world() will do just that, it roughly looks like:

void RenderInterface::update_world(World &world)
{
UpdateWorldMsg uw;

// Get the render thread representation of the `world`.
uw.render_world = render_world_representation(world);

// The world's current `state_stream` that contains all changes made
// on the main thread.
uw.state_stream = world->_world_reflection_interface.state_stream;

// Create and assign a new `state_stream` to the world's `_world_reflection_interface`
// that will be used for the next frame.
world->_world_reflection_interface->state_stream = new_state_stream();

// Post a message to the render thread to update the world.
post_message(UPDATE_WORLD, &uw);
}

This function will create a new message and post it to the render thread. The world being flushed and its StateStream are stored in the message and a new StateStream is created that will be used for the next frame. This new StateStream is set on the WorldRenderInterface of the World, and since all objects being created got a pointer to the same WorldRenderInterface they will use the newly created StateStream when storing state changes for the next frame.

Render thread

The render thread is spinning in a message loop:

void RenderInterface::render_thread_entry()
{
while (!_quit) {
// If there's no message -- put the thread to sleep until there's
// a new message to consume.
RenderMessage *message = get_message();

void *data = data(message);
switch (message->type) {
case UPDATE_WORLD:
internal_update_world((UpdateWorldMsg*)(data));
break;

// ... And a lot more case statements to handle different messages. There
// are other threads than the main thread that also communicate with the
// render thread. E.g., the resource loading happens on its own thread
// and will post messages to the render thread.
}
}
}

The internal_update_world() function is defined as:

void RenderInterface::internal_update_world(UpdateWorldMsg *uw)
{
// Call update on the `render_world` with the `state_stream` as argument.
uw->render_world->update(uw->state_stream);

// Release and recycle the `state_stream`.
release_state_stream(uw->state_stream);
}

It calls update() on the RenderWorld with the StateStream and when that is done the StateStream is released to a pool.

void RenderWorld::update(StateStream *state_stream)
{
MessageHeader *message_header;
StatePackageHeader *package_header;

// Consume a message and get the `message_header` and `package_header`.
while (get_message(state_stream, &message_header, (void**)&package_header)) {
switch (package_header->object_type) {
case RenderWorld::TYPE:
{
auto omp = (WorldRenderInterface::ObjectManagementPackage*)package_header;
// The call to `WorldRenderInterface::create` created this message.
if (message_header->type == WorldRenderInterface::CREATE)
create_object(omp);
}
case (RenderMeshObject::TYPE)
{
if (message_header->type == MeshObject::SET_VISIBILITY) {
auto svp = (MeshObject::SetVisibilityPackage*>)package_header;

// The `render_handle` is used to do a lookup in `_objects_lut` to
// to get the `object_index`.
uint32_t object_index = _object_lut[package_header->render_handle];

// Get the `render_object`.
void *render_object = _objects[object_index];

// Cast it since the type is already given from the `object_type`
// in the `package_header`.
auto rmo = (RenderMeshObject*)render_object;

// Call update on the `RenderMeshObject`.
rmo->update(message_header->type, package_header);
}
}
// ... And a lot more case statements to handle different kind of messages.
}
}
}

The above is mostly infrastructure to extract messages from the StateStream. It can be a bit involved since a lot of stuff is written out explicitly but the basic idea is hopefully simple and easy to understand.

On to the create_object call done when (message_header->type == WorldRenderInterface::CREATE) is satisfied:

void RenderWorld::create_object(WorldRenderInterface::ObjectManagementPackage *omp)
{
// Acquire an `object_index`.
uint32_t object_index = _objects.size();

// Same recycling mechanism as seen for render handles.
if (_free_object_indices.any()) {
object_index = _free_object_indices.back();
_free_object_indices.pop_back();
} else {
_objects.resize(object_index + 1);
_object_types.resize(object_index + 1);
}

void *render_object = omp->user_data;
if (omp->type == RenderMeshObject::TYPE) {
// Cast the `render_object` to a `MeshObject`.
RenderMeshObject *rmo = (RenderMeshObject*)render_object;

// If needed, do more stuff with `rmo`.
}

// Store the `render_object` and `type`.
_objects[object_index] = render_object;
_object_types[object_index] = omp->type;

if (omp->render_handle >= _object_lut.size())
_object_lut.resize(omp->handle + 1);
// The `render_handle` is used
_object_lut[omp->render_handle] = object_index;
}

So the take away from the code above lies in the general usage of the render_handle and the object_index. The render_handle of objects are used to do a look up in _object_lut to get the object_index and type. Let's look at an example, the same RenderWorld::update code presented earlier but this time the focus is when the message is MeshObject::SET_VISIBILITY:

void RenderWorld::update(StateStream *state_stream)
{
StateStream::MessageHeader *message_header;
StatePackageHeader *package_header;

while (get_message(state_stream, &message_header, (void**)&package_header)) {
switch (package_header->object_type) {
case (RenderMeshObject::TYPE)
{
if (message_header->type == MeshObject::SET_VISIBILITY) {
auto svp = (MeshObject::SetVisibilityPackage*>)package_header;

// The `render_handle` is used to do a lookup in `_objects_lut` to
// to get the `object_index`.
uint32_t object_index = _object_lut[package_header->render_handle];

// Get the `render_object` from the `object_index`.
void *render_object = _objects[object_index];

// Cast it since the type is already given from the `object_type`
// in the `package_header`.
auto rmo = (RenderMeshObject*)render_object;

// Call update on the `RenderMeshObject`.
rmo->update(message_header->type, svp);
}
}
}
}
}

The state reflection pattern shown in this post is a fundamental part of the engine. Similar patterns appear in other places as well and having a good understanding of this pattern makes it much easier to understand the internals of the engine.

Blog Archive

Labels

.NET Programming 2D Drafting 3D 3D Animation 3D Art 3D Artist 3D CAD 3D Character 3D design 3D design tutorial 3D Drafting 3D effects 3D Engineering 3D Lighting 3D Materials 3D Modeling 3D models 3D Navigation 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Layers Additive Manufacturing Advanced CAD features Advanced Modeling advanced plot styles Advanced Sketch AEC Technology AEC Tools AEC Workflow affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in 3D AI in Architecture AI in CAD AI in CNC AI in design AI in engineering AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Strategies AI Tips AI Tools AI Tricks AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-Assisted Workflow AI-enhanced AI-powered templates Animation Animation Curves Animation Layers animation pipeline animation tips Animation Tutorial Animation workflow annotation Annotation Scaling annotation standards Annotations AR Architectural AI Architectural CAD architectural design Architectural Drawing architectural drawings architectural modeling architectural preservation Architectural Productivity architectural visualization Architecture architecture CAD architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture projects architecture software architecture technology architecture tools Architecture Visualization Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model assembly techniques Asset Management augmented reality Auto Rig Maya AutoCAD AutoCAD advice AutoCAD AI tools AutoCAD API AutoCAD automation AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Blocks AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Guide AutoCAD Hub AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD scripting AutoCAD Scripts AutoCAD Sheet Set tips AutoCAD Teaching AutoCAD Techniques AutoCAD Templates AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automate automate drawing updates Automate Printing automate publishing automate repetitive tasks Automated Design automated publishing Automated Sheets Automation Automation in AutoCAD Automation Tools Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics batch drawing validation Batch Plot Batch Plotting Beginner beginner CAM Beginner Tips beginner tutorial beginners guide Bend Tools Best Practices Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM Tips BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Boolean Operations Building design Building Design Software Building Efficiency Building Maintenance building modeling Building Systems Building Technology business tools ByLayer CAD CAD API CAD assembly CAD Automation CAD best practices CAD Blocks CAD CAM CAD collaboration CAD commands CAD comparison CAD consistency CAD Customization CAD Data Management CAD Design CAD drawing checks CAD efficiency CAD errors CAD Evolution CAD file management CAD File Size Reduction CAD Integration CAD Learning CAD libraries CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD organization CAD Oversight CAD plugins CAD Productivity CAD project management CAD Projects CAD Rendering CAD Scripting CAD Security CAD Sheet Management CAD sheet sets CAD Shortcuts CAD Skills CAD software CAD software 2026 CAD software training CAD standardization CAD standards CAD Tables CAD team CAD teams CAD technology CAD templates CAD Tips CAD Tools CAD Tracking CAD tricks CAD Tutorial CAD version control CAD workflow CAD workflow optimization CAD workflows CAM CAM Best Practices CAM for beginners CAM Optimization CAM simulation CAM strategies CAM Tips CAM tutorial CAM Workflow car design software Case Study central hub Central Hub Solutions centralized commands centralized documentation centralized management Centralized Sheet Set centralizing CAD CEO Guide CG Workflow CGI CGI design Character Animation Character Rig Character Rigging cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloth Simulation Cloud CAD cloud CAD storage Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-Based CAD Cloud-First CNC CNC machining collaboration collaboration in CAD Collaboration Tools Collaborative CAD collaborative design Collaborative Drafting color management command abbreviations Complex Projects Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud construction documentation construction drawings construction management Construction Phases Construction Planning Construction Project Construction Projects Construction Scheduling Construction Technology construction tools construction tracking Contractor contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams creative tools CTB CTB STB Custom Hatch custom scripts custom tool palettes Custom visual styles Cutting Parameters Cybersecurity Data Backup Data Extraction data management Data Protection Data Reference Data Security Data Shortcut deadline tracking Demolition Design Design Automation Design Career Design Collaboration Design Comparison Design consistency Design Coordination Design Documentation design efficiency Design Engineering design errors Design Hacks Design Innovation design management design optimization Design Options Design Oversight design productivity design review Design Reviews design revisions Design Rules design software design software tips design standardization design standards Design Teams Design Technology design templates design tips Design Tools design tracking Design Workflow design-to-construction Designer designer hacks Designer Tools Designer Workflow Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital Drafting digital drawing Digital engineering digital fabrication Digital Library Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimension styles dimensioning Disaster Recovery document management Document Organization Documentation drafting drafting automation Drafting Efficiency Drafting productivity Drafting Shortcuts Drafting Standards Drafting Tips drafting tools Drafting Workflow Drawing Drawing Accuracy Drawing Automation drawing consistency drawing management Drawing Organization drawing revisions Drawing standards drawing templates drawing tips Dref DWG files DXF Export Dynamic Block Dynamic Block AutoCAD Dynamic Blocks dynamic data management Dynamic doors Dynamic windows Dynamics Dynamics Simulation Dynamo Dynamo automation early stage design eco design editing commands Efficiency efficient CAD efficient project management Electrical Systems Emerging Features Energy Analysis energy efficiency Energy Simulation Engineering Engineering Automation engineering CAD engineering data Engineering Design Engineering Documentation Engineering Drawing engineering drawings engineering efficiency Engineering Innovation Engineering Productivity engineering projects Engineering Skills engineering software Engineering Technology engineering tips engineering tools Engineering Tools 2025 Engineering Workflow Error Reduction Excel Export Workflow Express Tools External Reference Fabric Simulation facial animation Facial Rigging Facility Management Families Fast Structural Design faster delivery Field Documentation file auditing File Management file naming File Optimization File Recovery Fire Flame flange tips flat pattern Fluid Effects Fluid Simulation Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 guide Fusion 360 Tips Fusion 360 tutorial Future of Design Future Skills Game Design Game Development Game Effects Gamification Generative Design Geospatial Data GIS Global design teams global illumination GPU Acceleration grading optimization Graph Editor Green Architecture green building Green Technology Grips Handoff Hatch Patterns HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design Hub Workflows HVAC HVAC Design Tools HVAC Engineering HVAC Optimization Hydraulic Modeling IK/FK iLogic Import Workflow Industrial Design Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight Intelligent AutoCAD Hub Intelligent automation Intelligent Design intelligent modeling Intelligent Repetition Control Intelligent Sheet Management Intelligent Sheet Sets intelligent tools Intelligent Workflow Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan layer conventions Layer Management Layer Organization layer standards layouts Learn AutoCAD Legacy CAD Library components Licensing light techniques Lighting Lighting and shading Lighting Techniques lineweight Linked Models Liquid Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency machining productivity Macros maintenance command Manage multiple projects from a single hub with a centralized project management system that improves collaboration Management manual plotting manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals master sheet index Material Creation Material Libraries Maya Maya Animation Maya character animation Maya lighting Maya Python Maya Rigging Maya Shader Maya Tips Maya tutorial Maya Workflow measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP MEP Modeling Mesh-to-BIM Metal Fabrication Metal Structure milestone tracking modal analysis Model Clarity Model Management Model Optimization model space Modeling Secrets Modular Housing Monitoring Progress Motion capture Motion Design motion graphics motion simulation MotionBuilder Multi Office Workflow multi-axis machining Multi-Body Modeling Multi-Project Multi-Project Management Multi-User Environment multileader multiple sheet sets naming convention Navisworks Navisworks Best Practices nCloth Net Zero Design New Construction ObjectARX .NET API Open Source CAD Optimization Organization OVERKILL OVERKILL AutoCAD Override Layers Page Setup Palette paper space parametric assembly Parametric Components Parametric Constraints parametric design parametric family Parametric Modeling particle effects particle systems PDF PDF Export PDM system Personal Brand Phase Filters Phasing photorealism Photorealistic photorealistic render PlanGrid plot automation Plot Settings Plot Style Plot Style AutoCAD plot styles Plotting Plotting automation Plugin Tutorial Plumbing Design PM Tools point cloud Portfolio Post Construction Post-Processing Practice Drawing precision machining preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Preloaded families Presentation-ready visuals Printing Printing Quality Problem Solving Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Product Visualization Productivity productivity and workflow efficiency. productivity tips productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Professional Workflow progress management Project Accuracy project automation Project Collaboration project consistency Project Coordination project dashboard Project Documentation project efficiency Project Goals project management Project Management Tools project milestones Project Monitoring project organization Project Oversight project planning Project Progress project quality project timeline project tracking Project Visualization project workflow PTC Creo Publish Drawings PURGE PURGE AutoCAD Rail Transit Rapid Prototyping Realism realistic rendering realistic scenes ReCap Redshift Shader reduce CAD errors reduce CAD file size Reduce Errors reduce manual updates Reducing redundancy Redundant Work Render Render Optimization Render Passes Render Quality Render Settings render tips Rendering rendering engine Rendering Engines Rendering Optimization rendering settings rendering software Rendering Techniques Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow repetition-free workflow repetitive drawing Repetitive Elements repetitive-free Reports Resizable Block restoration workflow Reusable Components Revision Control Revision Tracking Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit plugin Revit Plugins Revit Scripting Revit skills Revit Standards Revit Strategies Revit Structure Revit Tags Revit Template Revit templates Revit Tips Revit tutorial Revit Workflow Ribbon Rigging Rigid Body robotics ROI Room planning save hours of work Save Time save time CAD Scale Autodesk Schedules screen Scripts Sculpting Secure Collaboration Sensor Data Shader Networks sheet management Sheet Metal Sheet Metal Design Sheet Metal Tricks Sheet organization sheet set Sheet Set Automation Sheet Set Efficiency Sheet Set fields Sheet Set Management Sheet Set Manager Sheet Set Optimization Sheet Set Organization Sheet Set Software Sheet Set Standards Sheet Set Tips Sheet Set Tools Sheet Sets sheet sets workflow Sheets shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart CAD smart CAD tools Smart City Smart Design smart dimensioning Smart Engineering Smart Factory Smart Infrastructur Smart Project Smart Sheet Management Smart Sheet Set Tools Smart Sheet Sets Smart Workflows Smoke Soft Body Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Space planning standard part libraries Standardization Standardize standardized templates Startup Design static stress STB Steel Structure Design Stress-Free Structural Design Structural Modeling Structural Optimization subscription model Subscription Value surface finish Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline task management team collaboration Team Efficiency Team Productivity Team Projects team training guide technical documentation Technical Drawing technical support Template management Template Setup Template usage templates text settings text style Texture Mapping Texturing thermal analysis time efficiency Time Management time saving tools time savings time-saving time-saving tools Title Block title block automation Title Blocks Tool Libraries Tool Management Tool Palette Guide toolbar toolpath Toolpath Optimization Toolpaths Topography Track Track changes Troubleshooting Tutorial Tutorials Unfolding Techniques urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling version control VFX View Filters Viewport configuration viewports Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ