000

Index Labels

Volumetric Clouds

.

There has been a lot of progress made recently with volumetric clouds in games. The folks from Reset have posted a great article regarding their custom dynamic clouds solution, Egor Yusov published Real-time Rendering of Physics-Based Clouds using Precomputed Scattering in GPU Pro 6, last year Andrew Schneider presented Real-time Volumetric Cloudscapes of Horizon: Zero Dawn, and just last week Sébastien Hillaire presented Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite. Inspired by all this latest progress we decided to implement a Stingray plugin to get a feel for the challenge that is real time clouds rendering.

Note: This article isn't an introduction to volumetric cloud rendering but more of a small log of the development process of the plugin. Also, you can try it out for yourself or look at the code by downloading the Stingray plugin. Feel free to contribute!

Modeling

The modeling of our clouds is heavily inspired by the Real-time Volumetric Rendering Course Notes and Real-time Volumetric Cloudscapes of Horizon: Zero Dawn. It uses a set of 3d and 2d noises that are modulated by a coverage and altitude term to generate the 3d volume to be rendered.

I was really impressed at the shapes that can be created from such simple building blocks. While you can definitely see cases where some tiling occurs, it’s not as bad as you would imagine. Once the textures are generated the tough part is to find the right sampling spaces and scales at which they should be sampled in the atmosphere. It's difficult to get a good balance between tiling artifacts vs getting enough high frequency details for the clouds. On top of that cache hits are greatly affected by the sampling scale used so it's another factor to consider.

Finding good sampling scales for all of these textures and choosing by how much the extrusion texture should affect the low frequency clouds is very time consuming. With some time you eventually build intuition for what will look good in most scenarios but it’s definitely a difficult part of the process.

We also generate some curl noise which is used to perturb and animate the clouds slightly. I've found that adding noise to the sampling position also reduces linear filtering artifacts that can arise when ray marching these low resolution 3d textures.

One thing that often bothered me is the oddly shaped cumulus clouds that can arise from tilled 3d noise. Those cases are particularly noticeable for distant clouds. Adding extra cloud coverage for lower altitude sampling positions minimizes this artifact.

Raymarching the volume at full resolution is too expensive even for high end graphics cards. So as suggested by Real-time Volumetric Cloudscapes of Horizon: Zero Dawn we reconstruct a full frame over 16 frames. I've found that to retain enough high frequency details of the clouds, we need a fairly high number of samples. We are currently using 256 steps when raymarching. We offset the starting position of the ray by a 4x4 Bayer matrix pattern to reduce banding artifacts that might appear due to undersampling. Mikkel Gjoel shared some great tips for banding reduction while presenting The Rendering Of Inside and encouraged the use of blue noise to remove banding patterns. While this gives better results there is a nice advantage of using a 4x4 pattern here: since we are rendering interleaved pixels it means that when rendering one frame we are rendering all pixels with the same Bayer offset. This yields a significant improvement in cache coherency compared to using a random noise offset per pixel. We also use an animated offset which allows us to gather a few extra samples through time. We use a 1d Halton sequence of 8 values and instead of using 100% of the 16ᵗʰ frame we use something like 75% to absorb the Halton samples.

To re-project the cloud volume we try to find a good approximation of the cloud's world position. While raymarching we track a weighted sum of the absorption position and generate a motion vector from it.

This allows us to reproject clouds with some degree of accuracy. Since we build one full resolution frame every 16ᵗʰ frame it’s important to track the samples as precisely as possible. This is especially true when the clouds are animated. Finding the right number of temporal samples you want to integrate over time is a compromise between getting a smoother signal for trackable pixels vs having a more noisy signal for invalidated pixels.

Lighting

To light the volume we use the "Beer-Powder" term described by Real-time Volumetric Cloudscapes of Horizon: Zero Dawn. It's a nice model since it simulates some of the out-scattering that occurs at the edges of the clouds. We discovered early on that it was going to be difficult to find terms that looked good for both close and distant clouds. So (for now anyways) a lot of the scattering and extinction coefficients are view dependent. This proved to be a useful way of building intuition for how each term affects the lighting of the clouds.

We also added the ambient term described by the Real-time Volumetric Rendering Course Notes which is very useful to add detail where all light is absorbed by the volume.

The ambient function described takes three parameters: sampling altitude, bottom color and top color. Instead of using constant values, we calculate these values by sampling the atmosphere at a few key locations. This means our ambient term is dynamic and will reflect the current state of the atmosphere. We use two pairs of samples perpendicular to the sun vector and average them to get the bottom and top ambient colors respectively.

Since we already calculated an approximate absorption position for the reprojection, we use this position to change the absorption color based on the absorption altitude.

Finally, we can reduce the alpha term by a constant amount to skew the absorption color towards the overlayed atmospheric color. By default this is disabled but it can be interesting to create some very hazy skyscapes. If this hack is used, it's important to protect the scattering highlight colors somewhat.

Animation

The animation of the clouds consists of a 2d wind vector, a vertical draft amount and a weather system.

We dynamically calculate a 512x512 weather map which consists of 5 octaves of animated Perlin noise. We remap the noise value differently for each rgb component. This weather map is then sampled during the raymarch to update the coverage, cloud type and wetness terms of the current cloud sample. Right now we resample this weather term for each ray step but a possible optimization would be to sample the weather data and the start and end of the ray positions and interpolate these values at each step. All of the weather terms come in sunny/stormy pairs so that we can lerp them based in a probability of rain percentage. This allows the weather system to have storms coming in and out.

The wetness term is used to update a structure of terms which defines how the clouds look based on how much humidity they carry. This is a very expensive lerp which happens per ray march and should be reduced to the bare minimum (the raymarch is instruction bound so each removed lerp is a big win optimization wise). But for the current exploratory phase it’s proving useful to be able to tweak a lot of these terms individually.

Future work

I think that as hardware gets more powerful realtime cloudscape solutions will be used more and more. There is tons of work left to do in this area. It is absolutely fascinating, challenging and beautiful. I am personally interested in improving the sense of scale the rendered clouds can have. To do so, I feel that the key is to reveal more and more of the high frequency details that shape the clouds. I think smaller cloud features are key to put in perspective the larger cloud features around them. But extracting higher frequency details usually comes at the cost of increasing the sampling rate.

We also need to think of how to handle shadows and reflections. We've done some quick tests by updating a 512x512 opacity shadow map which seemed to work ok. Since it is not a view frustum dependent term we can absorb the cost of updating the map over a much longer period of time than 16 frames. Also, we could generate this map by taking fewer samples in a coarser representation of the clouds. The same approach would work for generating a global specular cubemap.

I hope we continue to see more awesome presentations at GDC and Siggraph in the coming years regarding this topic!

Links

Blog Archive

Labels

.NET Programming 2D Drafting 3D 3D Animation 3D Art 3D Artist 3D CAD 3D Character 3D design 3D design tutorial 3D Drafting 3D effects 3D Engineering 3D Lighting 3D Materials 3D Modeling 3D models 3D Navigation 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Layers Additive Manufacturing Advanced CAD features Advanced Modeling advanced plot styles Advanced Sketch AEC Technology AEC Tools AEC Workflow affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in 3D AI in Architecture AI in CAD AI in CNC AI in design AI in engineering AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Strategies AI Tips AI Tools AI Tricks AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-Assisted Workflow AI-enhanced AI-powered templates Animation Animation Curves Animation Layers animation pipeline animation tips Animation Tutorial Animation workflow annotation Annotation Scaling annotation standards Annotations AR Architectural AI Architectural CAD architectural design Architectural Drawing architectural drawings architectural modeling architectural preservation Architectural Productivity architectural visualization Architecture architecture CAD architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture projects architecture software architecture technology architecture tools Architecture Visualization Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model assembly techniques Asset Management augmented reality Auto Rig Maya AutoCAD AutoCAD advice AutoCAD AI tools AutoCAD API AutoCAD automation AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Blocks AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Guide AutoCAD Hub AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD scripting AutoCAD Scripts AutoCAD Sheet Set tips AutoCAD Teaching AutoCAD Techniques AutoCAD Templates AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automate automate drawing updates Automate Printing automate publishing automate repetitive tasks Automated Design automated publishing Automated Sheets Automation Automation in AutoCAD Automation Tools Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics batch drawing validation Batch Plot Batch Plotting Beginner beginner CAM Beginner Tips beginner tutorial beginners guide Bend Tools Best Practices Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM Tips BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Boolean Operations Building design Building Design Software Building Efficiency Building Maintenance building modeling Building Systems Building Technology business tools ByLayer CAD CAD API CAD assembly CAD Automation CAD best practices CAD Blocks CAD CAM CAD collaboration CAD commands CAD comparison CAD consistency CAD Customization CAD Data Management CAD Design CAD drawing checks CAD efficiency CAD errors CAD Evolution CAD file management CAD File Size Reduction CAD Integration CAD Learning CAD libraries CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD organization CAD Oversight CAD plugins CAD Productivity CAD project management CAD Projects CAD Rendering CAD Scripting CAD Security CAD Sheet Management CAD sheet sets CAD Shortcuts CAD Skills CAD software CAD software 2026 CAD software training CAD standardization CAD standards CAD Tables CAD team CAD teams CAD technology CAD templates CAD Tips CAD Tools CAD Tracking CAD tricks CAD Tutorial CAD version control CAD workflow CAD workflow optimization CAD workflows CAM CAM Best Practices CAM for beginners CAM Optimization CAM simulation CAM strategies CAM Tips CAM tutorial CAM Workflow car design software Case Study central hub Central Hub Solutions centralized commands centralized documentation centralized management Centralized Sheet Set centralizing CAD CEO Guide CG Workflow CGI CGI design Character Animation Character Rig Character Rigging cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloth Simulation Cloud CAD cloud CAD storage Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-Based CAD Cloud-First CNC CNC machining collaboration collaboration in CAD Collaboration Tools Collaborative CAD collaborative design Collaborative Drafting color management command abbreviations Complex Projects Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud construction documentation construction drawings construction management Construction Phases Construction Planning Construction Project Construction Projects Construction Scheduling Construction Technology construction tools construction tracking Contractor contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams creative tools CTB CTB STB Custom Hatch custom scripts custom tool palettes Custom visual styles Cutting Parameters Cybersecurity Data Backup Data Extraction data management Data Protection Data Reference Data Security Data Shortcut deadline tracking Demolition Design Design Automation Design Career Design Collaboration Design Comparison Design consistency Design Coordination Design Documentation design efficiency Design Engineering design errors Design Hacks Design Innovation design management design optimization Design Options Design Oversight design productivity design review Design Reviews design revisions Design Rules design software design software tips design standardization design standards Design Teams Design Technology design templates design tips Design Tools design tracking Design Workflow design-to-construction Designer designer hacks Designer Tools Designer Workflow Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital Drafting digital drawing Digital engineering digital fabrication Digital Library Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimension styles dimensioning Disaster Recovery document management Document Organization Documentation drafting drafting automation Drafting Efficiency Drafting productivity Drafting Shortcuts Drafting Standards Drafting Tips drafting tools Drafting Workflow Drawing Drawing Accuracy Drawing Automation drawing consistency drawing management Drawing Organization drawing revisions Drawing standards drawing templates drawing tips Dref DWG files DXF Export Dynamic Block Dynamic Block AutoCAD Dynamic Blocks dynamic data management Dynamic doors Dynamic windows Dynamics Dynamics Simulation Dynamo Dynamo automation early stage design eco design editing commands Efficiency efficient CAD efficient project management Electrical Systems Emerging Features Energy Analysis energy efficiency Energy Simulation Engineering Engineering Automation engineering CAD engineering data Engineering Design Engineering Documentation Engineering Drawing engineering drawings engineering efficiency Engineering Innovation Engineering Productivity engineering projects Engineering Skills engineering software Engineering Technology engineering tips engineering tools Engineering Tools 2025 Engineering Workflow Error Reduction Excel Export Workflow Express Tools External Reference Fabric Simulation facial animation Facial Rigging Facility Management Families Fast Structural Design faster delivery Field Documentation file auditing File Management file naming File Optimization File Recovery Fire Flame flange tips flat pattern Fluid Effects Fluid Simulation Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 guide Fusion 360 Tips Fusion 360 tutorial Future of Design Future Skills Game Design Game Development Game Effects Gamification Generative Design Geospatial Data GIS Global design teams global illumination GPU Acceleration grading optimization Graph Editor Green Architecture green building Green Technology Grips Handoff Hatch Patterns HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design Hub Workflows HVAC HVAC Design Tools HVAC Engineering HVAC Optimization Hydraulic Modeling IK/FK iLogic Import Workflow Industrial Design Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight Intelligent AutoCAD Hub Intelligent automation Intelligent Design intelligent modeling Intelligent Repetition Control Intelligent Sheet Management Intelligent Sheet Sets intelligent tools Intelligent Workflow Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan layer conventions Layer Management Layer Organization layer standards layouts Learn AutoCAD Legacy CAD Library components Licensing light techniques Lighting Lighting and shading Lighting Techniques lineweight Linked Models Liquid Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency machining productivity Macros maintenance command Manage multiple projects from a single hub with a centralized project management system that improves collaboration Management manual plotting manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals master sheet index Material Creation Material Libraries Maya Maya Animation Maya character animation Maya lighting Maya Python Maya Rigging Maya Shader Maya Tips Maya tutorial Maya Workflow measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP MEP Modeling Mesh-to-BIM Metal Fabrication Metal Structure milestone tracking modal analysis Model Clarity Model Management Model Optimization model space Modeling Secrets Modular Housing Monitoring Progress Motion capture Motion Design motion graphics motion simulation MotionBuilder Multi Office Workflow multi-axis machining Multi-Body Modeling Multi-Project Multi-Project Management Multi-User Environment multileader multiple sheet sets naming convention Navisworks Navisworks Best Practices nCloth Net Zero Design New Construction ObjectARX .NET API Open Source CAD Optimization Organization OVERKILL OVERKILL AutoCAD Override Layers Page Setup Palette paper space parametric assembly Parametric Components Parametric Constraints parametric design parametric family Parametric Modeling particle effects particle systems PDF PDF Export PDM system Personal Brand Phase Filters Phasing photorealism Photorealistic photorealistic render PlanGrid plot automation Plot Settings Plot Style Plot Style AutoCAD plot styles Plotting Plotting automation Plugin Tutorial Plumbing Design PM Tools point cloud Portfolio Post Construction Post-Processing Practice Drawing precision machining preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Preloaded families Presentation-ready visuals Printing Printing Quality Problem Solving Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Product Visualization Productivity productivity and workflow efficiency. productivity tips productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Professional Workflow progress management Project Accuracy project automation Project Collaboration project consistency Project Coordination project dashboard Project Documentation project efficiency Project Goals project management Project Management Tools project milestones Project Monitoring project organization Project Oversight project planning Project Progress project quality project timeline project tracking Project Visualization project workflow PTC Creo Publish Drawings PURGE PURGE AutoCAD Rail Transit Rapid Prototyping Realism realistic rendering realistic scenes ReCap Redshift Shader reduce CAD errors reduce CAD file size Reduce Errors reduce manual updates Reducing redundancy Redundant Work Render Render Optimization Render Passes Render Quality Render Settings render tips Rendering rendering engine Rendering Engines Rendering Optimization rendering settings rendering software Rendering Techniques Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow repetition-free workflow repetitive drawing Repetitive Elements repetitive-free Reports Resizable Block restoration workflow Reusable Components Revision Control Revision Tracking Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit plugin Revit Plugins Revit Scripting Revit skills Revit Standards Revit Strategies Revit Structure Revit Tags Revit Template Revit templates Revit Tips Revit tutorial Revit Workflow Ribbon Rigging Rigid Body robotics ROI Room planning save hours of work Save Time save time CAD Scale Autodesk Schedules screen Scripts Sculpting Secure Collaboration Sensor Data Shader Networks sheet management Sheet Metal Sheet Metal Design Sheet Metal Tricks Sheet organization sheet set Sheet Set Automation Sheet Set Efficiency Sheet Set fields Sheet Set Management Sheet Set Manager Sheet Set Optimization Sheet Set Organization Sheet Set Software Sheet Set Standards Sheet Set Tips Sheet Set Tools Sheet Sets sheet sets workflow Sheets shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart CAD smart CAD tools Smart City Smart Design smart dimensioning Smart Engineering Smart Factory Smart Infrastructur Smart Project Smart Sheet Management Smart Sheet Set Tools Smart Sheet Sets Smart Workflows Smoke Soft Body Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Space planning standard part libraries Standardization Standardize standardized templates Startup Design static stress STB Steel Structure Design Stress-Free Structural Design Structural Modeling Structural Optimization subscription model Subscription Value surface finish Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline task management team collaboration Team Efficiency Team Productivity Team Projects team training guide technical documentation Technical Drawing technical support Template management Template Setup Template usage templates text settings text style Texture Mapping Texturing thermal analysis time efficiency Time Management time saving tools time savings time-saving time-saving tools Title Block title block automation Title Blocks Tool Libraries Tool Management Tool Palette Guide toolbar toolpath Toolpath Optimization Toolpaths Topography Track Track changes Troubleshooting Tutorial Tutorials Unfolding Techniques urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling version control VFX View Filters Viewport configuration viewports Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ