000

Index Labels

A Bug in Object Replication and Message Reordering

.

The Bitsquid network system supports a peer-to-peer model with migration of network objects -- i.e., changing the owner of a network object from one peer to another. This recently lead to an rare race condition.

To understand this bug you must first understand a little bit about how our network system works.

Background

The entire network model is based on an packet delivery system (on top of UDP) that provides ACKs for unreliable packets as well as a reliable (and ordered) packet stream between any two network endpoints. At the next layer we have implemented a remote-procedure-call service for Lua as well as an object replication system.

Games can use these services however they like, but our recommendation is to do as much as possible with the object replication system and as little as possible with RPC calls, since using explicit RPC messages tends to require more bandwidth and be more error prone.

The network be run in both client-server and peer-to-peer mode. The only difference is that in client-server mode, the server relays all messages (clients never talk directly to each other) and owns most of the network objects. (Clients can own objects in client-server mode, in that case the changes to the objects are relayed by the server.)

Objects are replicated with a message stream that looks something like this:

A: CREATE [wait for ack] UPDATE_1 UPDATE_2 ... UPDATE_n DESTROY

Here, A (the owner of the object) first sends a reliable message that creates the object. When it has received an ACK for that message, it starts sending updates, informing the other players about changes to the object. (By monitoring ACKs, it knows which changes the other players have received, so it only sends updates when necessary and it will resend updates if the messages are lost.) Finally, at some future point, the object is destroyed, through another reliable message.

The UPDATE messages are sent on the unreliable stream (for maximum performance), so they can potentially arrive before CREATE or after DELETE. But this is not a problem, because we simply ignore UPDATE messages that arrive out of order.

This approach ensures that everybody that participates in the game session will see the same set of objects with the same properties (at least eventually, keeping in mind that messages can be delayed).

Migration

Migration complicates this picture somewhat.

Migrating a network object means changing the owner of the object from one peer to another. There are a number of reasons why you might want to do that. First, if a player drops out of the game, the objects owned by that player may need to be taken over by somebody else. Second, in a peer-to-peer game we may want to load balance, so that each peer is managing about the same amount of objects. Finally, sometimes a particular player is interacting directly with a particular object (picking up a rock, etc). It can then be beneficial to make that player owner of the object, so that the interaction is not affected by network latency.

In our network, migration is implemented with a reliable MIGRATION message that tells everybody in the session about the object's new owner. The migration message is always sent by a special peer, the HOST of the game session. (To ensure that peers do not compete for the ownership of an object.)

So if we look at a message stream with migration involved, it looks something like this:

   A:  C Ua Ua Ua Ua Ua
HOST: M_ab
B: Ub Ub Ub Ub Ub Ub Ub Ub D

If you are an experienced network programmer you should start to smell trouble at this point.

The problem is that while the message system provides an ordered stream of messages between any two endpoints, there is no ordering of messages between different endpoints.

Consider an additional network peer X. There is an ordered stream of messages A → X. There is also an ordered stream of messages B → X. But there is no guaranteed ordering between the messages sent from A and the messages sent from B and HOST. So, suppose the messages from A → X are delayed. Then X could see the following message stream:

M_ab Ub Ub Ub D C Ua Ua Ua

So X gets a request to migrate the object before it has been created. And the creation message arrives after DELETE. In other words, a complete mess.

To be sure, this only happens if the object gets migrated really close to being created or deleted and if there are asymmetric network delays on top of that. But of course, it always happens to someone.

The Fix

There are many possible ways of fixing this. Here are some:

  • We could impose a global message ordering. We could make sure that the reliable message streams are globally ordered to prevent "paradoxes" of this kind. I.e., if HOST sends M_ab after receiving C, no peer should receive M_ab before C. Unfortunately, this is not as easy as it sounds. For example, what if A dies before it has sent C to X? In that case, that failed delivery will also block the channels HOST → X and B → X, since they are not allowed to deliver any messages before X has received C.

  • We could use a migration handshake. We could do some kind of handshake procedure to make sure that everybody has received M_ab, before B takes over ownership. But this would require a lot of extra messages and temporarily put the object in limbo.

  • We could fix the ACKs. We could make it so that X doesn't ACK M_ab until C has arrived, thus forcing HOST to keep resending it, until we are ready to receive it. This would work, but would require us to implement ACKing of individual messages. Currently, we just ACK an entire UDP packet (containing many messages) on reception, which is simpler and more performant.

  • We could create an internal message queue. We could queue up migration, create and delete messages in some sort of internal queue if they arrive out of order and try to fix things up later. This is a truly horrible "solution" that increases code complexity and is likely to cause lots of confusing bugs in the future.

All these solutions are probably workable, but they all have the drawback of increasing complexity. And I really don't like to increase the complexity of network code. Reasoning about network code is hard enough as it is, we should always strive for the simplest solution possible.

So, instead, the first thing I did was to simplify the problem by eliminating the host from the equation. I simply let the new owner send out the migration message instead of the host:

   A:  C Ua Ua Ua Ua Ua
B: M_ab Ub Ub Ub Ub Ub Ub Ub Ub D

This is already a lot better. Now we only have two parties to worry about (apart from X), instead of three.

We still want the host to be in charge of migration. Otherwise we run into tricky problems of what should happen if several peers try to assume ownership of an object at the same time. So we let the host initiate the migration by sending a message to the new owner (B). Then, B is responsible for notifying everybody else about this.

With this approach, we can use the same "wait for ack" trick that we used during creation to make sure that B doesn't send any updates to peers that haven't acked the migration:

   A:  C [wait] Ua Ua Ua Ua Ua
B: M_ab [wait] Ub Ub Ub Ub Ub Ub Ub Ub D

We still haven't completely solved the problem, X can still see weird message orderings such as:

M_ab   C   D
M_ab D C

But this won't be a problem as long as we do two things:

  • We let MIGRATE act as a CREATE message, if we get MIGRATE for an object that doesn't exist.

  • We ignore "old" CREATE messages. (The C that arrives after M.)

To be able to distinguish old messages I introduced a migration counter. This is just a number that starts at zero when the object is created and is increased (by HOST) every time the object is migrated.

We tag all CREATE, DESTROY and MIGRATE messages with the migration counter and simply ignore "old" messages. With this approach, the message streams will look like this:

   A:  C_0 [wait] Ua Ua Ua Ua Ua
B: M_ab_1 [wait] Ub Ub Ub Ub Ub Ub Ub Ub D_1

We can now verify that all possible message orderings that X can see work correctly:

C_0      M_ab_1  D_1  -- ok, the expected order
M_ab_1 C_0 D_1 -- ok, M_ab_1 creates the object with migration counter 1 and C_0 is ignored
M_ab_1 D_1 C_0 -- ok, M_ab_1 creates the object with migration counter 1 and C_0 is ignored

The system works equally well if there are multiple migration steps:

   A:  C_0 [wait] Ua Ua 
B: M_ab_1 [wait] Ub Ub Ub
C: M_bc_2 [wait] Uc Uc Uc D_2

No matter in which order the messages arrive we will end up in the correct state.

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ