000

Index Labels

A simpler design for asynchronous APIs

.

Accessing Internet services, e.g. to fetch a web page or to store data on a leaderboard, requires an asynchronous API. You send a request and then, at some later point, you receive a reply.

Asynchronous APIs are trickier to design than synchronous ones. You can't simply return the result of the operation, since it isn't ready yet. Instead you have to wait until it is done and then send it to the caller through some other channel. This often results in designs that are needlessly complicated and cumbersome to work with.

Callbacks

The most common approach is perhaps to use callbacks. You make the asynchronous request and when it completes the callback is called. The callback can either be a global system-wide callback, or (which is nicer) a callback that you supply when you make the asynchronous call.

leaderboard->set_score(100, set_score_cb, my_user_data);

void set_score_cb(SetScoreResult *result, void *user_data)
{
...
}

I have already mentioned in a previous article that I'm not too fond of callbacks and that I prefer polling in most cases. Badly designed polling can be expensive, but in the case of asynchronous network operations we wouldn't expect to have more than a dozen or so in-flight at any one time, which means the cost of polling is negligible.

Callbacks tend to make code worse. There are several reasons.

First, you usually have little control over when a callback happens. This means that it can happen at a time that isn't very suitable to you. For cleanliness, you may want to do all your leaderboard processing in your update_leaderboard() function. But the callback might be called outside update_leaderboard(), messing up all your carefully laid plans.

Second, it can be tricky to know what you can and cannot do in a callback. The code that calls you might make some assumptions that you inadvertently violate. These things can sometimes be really tricky to spot. Consider something as simple as:

int n = _leaderboard_operations.size();
for (int i=0; i!=n; ++i) {
if (done(_leaderboard_operations[i]))
do_callback(_leaderboard_operations[i]);
}

This looks perfectly innocent. But if the callback happens to do something that changes the _leaderboard_operations vector, for example by posting a new request or removing an old one, the code can blow up with memory access errors. I have been bitten by things like this many times. By now, every time I see a callback a warning clock goes off in my head: "danger, danger -- there is a callback here, remember that when you make a callback anything can happen".

Sometimes it can be necessary to double buffer data to get rid of bugs like this.

Third, callbacks always happen in the wrong context. You get the callback in some "global", "top-level" context, and from there you have to drill down to the code that actually knows what to do with the information. (Typically by casting the user_data pointer to some class and calling a member function on it.) This makes the code hard to follow.

In other words, callbacks lead to hard-to-read code, hard-to-follow code flow, subtle bugs, redundant boilerplate forwarding stubs and instruction cache misses. Bleh!

Request objects

Another common approach is to have some sort of request object that represents the asynchronous operation. Something like:

SetScoreRequest *request = _leaderboard->set_score(100);
...
if (request->is_done()) {
bool success = request->result();
delete request;
}

Or perhaps, using the C++11 concepts of promises and futures (I have only a passing acquaintance with C++11, so forgive me if I mess something up):

std::promise<bool> *promise = new std::promise<bool>();
_leaderboard->set_score(100, promise);
...
std::future<bool> future = promise->get_future();
if (future.valid()) {
bool success = future.get();
_leaderboard->forget_promise(promise);
delete promise;
}

This is a lot better than the callback approach, but still in my view, overly complicated. It is clearly a design based on the object-oriented philosophy of -- when in doubt, make more objects.

But these extra objects don't really do much. They just act as pointless intermediaries that pass some information back and forth between our code and the _leaderboard object. And they are a hassle for the caller to keep track of. She must store them somewhere and make sure to delete them when she is done to avoid memory leaks.

Furthermore, if we want to expose this API to a scripting language, such as Lua, we have to expose these extra objects as well.

ID tokens

As readers of my previous articles know, I'm a big fan of using IDs. Instead of exposing internal system objects to the caller of an API, I prefer to give the caller IDs that uniquely identifies the objects and provide functions for obtaining information about them.

That way, I am free to organize my internal data however I like. And it is easier to see when the state of my objects might mutate, since all calls go through a single API.

With this approach the interface would look something like this:

unsigned set_score(int value);
enum SetScoreResult {SSR_IN_PROGRESS, SSR_SUCCESS, SSR_FAILURE};
SetScoreResult set_score_result(unsigned id);

Note that there are no objects that the user must maintain and release. The ID can easily be manipulated by a scripting layer. If the user doesn't need to know if the operation succeeded, she can just throw away the returned ID.

In this API I don't have any method for freeing tokens. I don't want to force the user to do that, since it is both a hassle (the user must track all IDs and decide who owns them) and error prone (easy to forget to release an ID).

But obviously, we must free tokens somehow. We can't store the results of the set_score() operations forever. If we did, we would eventually run out of memory.

There are several ways you could approach this problem. My preferred solution in this particular case is to just have a fixed limit on the number of operations that we remember. Since we don't expect more than a dozen simultaneous operations, if we make room for 64, we have plenty of slack and still use only 64 bytes of memory. A modest amount by any standard.

We can keep the results in a round-robin buffer:

/// Maximum number of requests whose result we remember.
static const int MAX_IN_FLIGHT = 64;

/// The result of the last MAX_IN_FLIGHT requests.
char results[MAX_IN_FLIGHT];

/// Number of requests that have been made.
unsigned num_requests;

SetScoreResult set_score_result(unsigned id)
{
// If more than MAX_IN_FLIGHT requests have been made after this one,
// the information about it is lost.
if (num_requests - id > MAX_IN_FLIGHT)
return SSR_NO_INFORMATION;

return results[id % MAX_IN_FLIGHT];
}

This means that you can only ask about the result of the last 64 operations. On the other hand, this solution uses very little memory, does not allocate anything, has very quick lookups and doesn't require the user to explicitly free tokens.

To me, this added simpleness and flexibility outweighs the disadvantage of having a limit on the maximum number of in flight operations that we support.

Implicit APIs

In many cases, the best solution to asynchronous conundrums is to redesign the API to abstract away the entire concept of asynchronous operations, so that the user doesn't even have to bother with it.

This can require some creative rethinking in order to focus on what it is the user really wants to do. For example, for our example, we might come up with this:

/// Sets the score to the specified value. This is an asynchronous operation.
/// You can use acknowledged_score() to find out when it has completed.
void set_score(int score);

/// Returns the last score that has been acknowledged by the server.
int acknowledged_score();

This is probably all that the user needs to know.

Now we have really simplified the API. The user still needs to be aware that set_score() isn't propagated to the server immediately, but she doesn't at all have to get involved in what asynchronous operations are performed and how they progress.

This kind of radical rewrite might not be possible (or even desirable) for all asynchronous systems. You have to balance the value of high-level abstractions and simplifications against the need for low-level control. But it is almost always worth exploring the possibility since it can lead to interesting ideas and dramatically simplified APIs.

For example, the interface for an asynchronous web fetcher could be as simple as:

const char *fetch(const char *url);

If called with an URL that hadn't been fetched yet, the function would issue a request for the URL and return NULL. Once the data was available, the function would return it. On the next call, the data would be freed. To fetch a web page, you would just repeatedly call the function with an URL until you got a reply.

Quite fetching, wouldn't you say?

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ