000

Index Labels

Sensible Error Handling - Part 2

.
In my last post I wrote that there are three kinds of errors that we game programmers need to deal with:

  • Unexpected errors
  • Expected errors
  • Warnings

An unexpected error is an error that is unlikely happen and that the caller of our API has no sensible way of handling, such as a corrupted internal state, a failed memory allocation, a bad parameter supplied to a function or a file missing from a game disc. I also argued that the best way of dealing with such errors was to crash fast and hard with an assert, to expose the error and avoid "exporting" it in the API.

In this post I'm going to look at the expected errors.

Expected errors


An expected error is an error that we expect to happen and that the caller must have a plan for dealing with. A typical example is an error when fetching a web page or saving data to a memory card (which can be yanked at any moment).

If you are familiar with Java, the distinction between "expected" and "unexpected" errors matches quite closely Java's concept of "checked" and "unchecked" errors. Checked errors are errors that the caller must deal with (or explicitly rethrow). Unchecked errors are errors that the caller is not expected to deal with. They will typically cause a crash or a long jump out to the main loop, for the applications where that makes sense.

My main rule for dealing with expected errors is:

    Minimize the points and types of failures

In other words, just as our APIs abstract functionality -- replacing low-level calls with high-level concepts -- they should also abstract dysfunctionality and replace a large number of low-level failure states with a few high-level ones.

Minimizing the points of failure means that instead of having every function (enumerate(), open(), read(), close, etc) return an error code, we design the API so that errors occur in as few places as possible. This reduces the checks that the caller needs to do and the number of different possible paths through her code.

Minimizing the types of failure means that when we fail we only do it in one of a very small number of well-defined ways. We don't return an int error code that can take on 4 billion different values with vaguely defined, ambiguous and overlapping meanings (quick: what is the difference between EWOULDBLOCK and EAGAIN?).

In most cases true/false is enough (together with a log entry with more details). If the caller needs more information, we can use an enum for that specific function, with a very specific small range of values.

Again, the idea behind all this is to reduce the burden on the caller. If there is only a small number of errors that can happen, it is easy for her to verify that she has all the bases covered.

As an example, a (partial) save game interface may look like:

class SaveSystem
{
struct Data {const char *p; unsigned len;};
enum LoadResult {IN_PROGRESS, COMPLETED, FAILED};

unsigned num_saved_games();
LoadId start_loading_game(unsigned i);
LoadResult load_result(LoadId id);
Data loaded_data(LoadId id);
void free_data(LoadId id);
};

Note that there is only a single place where the caller needs to check for errors (in the reply to load_result()). And there is only one possible fail state, either the load completes successfully or it fails.

To except or not to except


Exceptions are often touted as the latest and greatest in error handling, but as you know from my previous post I am not too found of them.

Exceptions can work for unexpected errors. I still prefer to use asserts, but if you are writing a program that cannot crash, an exception can be a reasonable way to get back to the main loop if you reach an unexpected failure state. (It's not the only option though. Lua's pcall() mechanism is an elegant and minimalistic alternative.)

But for the expected errors, the errors that are a part of the API, exceptions have a number of serious problems.

The first is that exceptions do not have to be declared in the API, so if you encounter an API that looks like this:

class SaveSystem
{
struct Data {const char *p; unsigned len;};
class LoadException : public Exception {};

unsigned num_saved_games();
LoadId start_loading_game(unsigned i);
bool load_completed(LoadId id);
Data loaded_data(LoadId id);
void free_data(LoadId id);
};

you are immediately faced with a number of questions. Which functions in the API can throw a LoadException? All of them or just some? Do I need to check for it everywhere? Are there any other exceptions that can be thrown, like FileNotFoundException or IJustMadeUpThisException. Should I just catch everything everywhere to be safe?

In my view, this is unacceptable. The errors are an important part of the API. If you don't know what errors can occur and where, you have an incomplete picture of the API. Fine, we can address that with throw-declarations:

class SaveSystem
{
struct Data {const char *p; unsigned len;};
class LoadException : public Exception {};

unsigned num_saved_games() throw();
LoadId start_loading_game(unsigned i) throw();
bool load_completed(LoadId id) throw(LoadException);
Data loaded_data(LoadId id) throw();
void free_data(LoadId id) throw();
};

Now the interface is at least well-defined, if a bit cluttered. Note that if you go down this route every single function in your code base should have a throw declaration. Otherwise you are back in no man's land, without any clue about which functions throw exceptions and which don't.

But declaring exceptions can have its drawbacks too. If you require all functions to declare exceptions, a function that just wants to "pass along" some exceptions up the call stack must declare them. This gives the exceptions an infectious tendency. Unless you are careful with your design the high level functions will gather longer and longer lists of exceptions that become harder and harder to maintain. Templates cause additional problems, because you can't know what exceptions a templated object might throw.

These issues have sparked a heated debate in the Java-community about whether checked (declared) exceptions are a good idea or not. C# has chosen not to support exception declarations.

At the heart of the debate is (I think) a confusion about what exceptions are for. Are they for diagnosing and recovering from unforeseen errors, or are they a convenient control structure for dealing with expected errors? By explicitly distinguishing "unexpected errors" from "expected errors" we make these two roles clearer and can thus avoid a lot of the confusion.

Anyways, the declarations are not my only gripe with exceptions. My second issue is that they introduce additional "hidden" code paths, which makes the code harder to read, understand and reason about.

Consider the following piece of code:

if (ss->load_completed(id)) {
Data data = ss->loaded_data(id);
...
}

By just glancing at this code, it is pretty hard to tell that an error in load_completed() will cause it to leave the current function and jump to some other location higher up in the call stack.

When exceptions are used you can't just read the code straight up. You have to consider that at every single line you are looking at, an exception might be raised and the code flow changed.

This leads me to the concept of exception safety. Is your code "exception safe"? I'll go out on a limb and say: probably not. Writing "exception safe" code requires having a mindset where you view every single function in your code base as a "transaction" that can be fully or partially rolled back in the case of an exception. That is a lot of extra effort, especially if you need to do it in every single line in your code base.

It might still be worth it, of course, if exceptions had many other advantages. But as a method for dealing with expected errors, I just don't see those advantages, so I'd rather use my brain cycles for something else.

So what do I propose instead? Error codes!

Yes, yes I know, we all hate error codes, but why do we hate them? As I see it, there are three main problems with using error codes for error reporting:

  1. The code gets littered with error checks, making it hard to read.
  2. Undescriptive error codes lead to confusion about what errors a function can return and what they mean.
  3. Since C functions cannot return multiple values, we cannot both return an error code and a result. If we use error codes, the result must be returned in a parameter, which is inelegant.

I have already addressed the first two points. By designing our API so that errors only happen in a few places, we minimize the checks that are needed. And instead of returning an undescriptive generic error code, we should return a function-specific enum that exactly describes the errors that the function can generate:

enum LoadResult {IN_PROGRESS, COMPLETED, FILE_NOT_FOUND, FILE_COULD_NOT_BE_READ, FILE_CORRUPTED};
LoadResult load_result(LoadId id);

As for the third problem, I don't know why C programmers are so adverse to just putting two values in a struct and returning that. In my opinion, this:

struct Data {const char *p; unsigned len;};
Data loaded_data();

Is a lot nicer than this:

const char *loaded_data(unsigned &len);

Maybe in them olden days, returning 8 bytes on the stack was such a horrible inefficient operation that it caused your vacuum tubes to explode. But clearly, it is time to move on. If you want to return multiple value -- just do it! The "return in parameter" idiom should only be used for types where returning on the stack would cause memory allocation, such as strings or vectors.

This is how you return an error code in 2012:

struct SaveResult {
enum {NO_ERROR, DISK_FULL, WRITE_ERROR} error;
unsigned saved_bytes;
};
SaveResult save_result(SaveId id);

In the next and final part of this series I'll look at warnings.

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ