000

Index Labels

Managing Decoupling Part 4 -- The ID Lookup Table

.
Today I am going to dig deeper into an important and versatile data structure that pops up all the time in the BitSquid engine -- the ID lookup table.

I have already talked about the advantages of using IDs to refer to objects owned by other systems, but let me just quickly recap.

IDs are better than direct pointers because we don’t get dangling references if the other system decides that the object needs to be destroyed.

IDs are better than shared_ptr<> and weak_ptr<> because it allows the other system to reorganize its objects in memory, delete them at will and doesn’t require thread synchronization to maintain a reference count. They are also POD (plain old data) structures, so they can be copied and moved in memory freely, passed back and forth between C++ and Lua, etc.

By an ID I simply mean an opaque data structure of n bits. It has no particular meaning to us, we just use it to refer to an object. The system provides the mechanism for looking up an object based on it. Since we seldom create more than 4 billion objects, 32 bits is usually enough for the ID, so we can just use a standard integer. If a system needs a lot of objects, we can go to 64 bits.

In this post I’m going to look at what data structures a system might use to do the lookup from ID to system object. There are some requirements that such data structures need to fulfill:

  • There should be a 1-1 mapping between live objects and IDs.
  • If the system is supplied with an ID to an old object, it should be able to detect that the object is no longer alive.
  • Lookup from ID to object should be very fast (this is the most common operation).
  • Adding and removing objects should be fast.

Let’s look at three different ways of implementing this data structure, with increasing degrees of sophistication.

The STL Method


The by-the-book object oriented approach is to allocate objects on the heap and use a std::map to map from ID to object.

typedef unsigned ID;

struct System
{
ID _next_id;
std::map<ID, Object *> _objects;

System() {_next_id = 0;}

inline bool has(ID id) {
return _objects.count(id) > 0;
}

inline Object &lookup(ID id) {
return *_objects[id];
}

inline ID add() {
ID id = _next_id++;
Object *o = new Object();
o->id = id;
_objects[id] = o;
return id;
}

inline void remove(ID id) {
Object &o = lookup(id);
_objects.erase(id);
delete &o;
}
};

Note that if we create more than four billion objects, the _next_id counter will wrap around and we risk getting two objects with the same ID.

Apart from that, the only problem with this solution is that it is really inefficient. All objects are allocated individually on the heap, which gives bad cache behavior and the map lookup results in tree walking which is also bad for the cache. We can switch the map to a hash_map for slightly better performance, but that still leaves a lot of unnecessary pointer chasing.

Array With Holes


What we really want to do is to store our objects linearly in memory, because that will give us the best possible cache behavior. We can either use a fixed size array Object[MAX_SIZE] if we know the maximum number of objects that will ever be used, or we can be more flexible and use a std::vector.

Note: If you care about performance and use std::vector<T> you should make a variant of it (call it array<T> for example) that doesn’t call constructors or initializes memory. Use that for simple types, when you don’t care about initialization. A dynamic vector<T> buffer that grows and shrinks a lot can spend a huge amount of time doing completely unnecessary constructor calls.

To find an object in the array, we need to know its index. But just using the index as ID is not enough, because the object might have been destroyed and a new object might have been created at the same index. To check for that, we also need an id value, as before. So we make the ID type a combination of both:

struct ID {
unsigned index;
unsigned inner_id;
};

Now we can use the index to quickly look up the object and the inner_id to verify its identity.

Since the object index is stored in the ID which is exposed externally, once an object has been created it cannot move. When objects are deleted they will leave holes in the array.


When we create new objects we don’t just want to add them to the end of the array. We want to make sure that we fill the holes in the array first.

The standard way of doing that is with a free list. We store a pointer to the first hole in a variable. In each hole we store a pointer to the next hole. These pointers thus form a linked list that enumerates all the holes.


An interesting thing to note is that we usually don’t need to allocate any memory for these pointers. Since the pointers are only used for holes (i. e. dead objects) we can reuse the objects’ own memory for storing them. The objects don’t need that memory, since they are dead.

Here is an implementation. For clarity, I have used an explicit member next in the object for the free list rather than reusing the object’s memory:

struct System
{
unsigned _next_inner_id;
std::vector<Object> _objects;
unsigned _freelist;

System() {
_next_inner_id = 0;
_freelist = UINT_MAX;
}

inline bool has(ID id) {
return _objects[id.index].id.inner_id == id.inner_id;
}

inline Object &lookup(ID id) {
return _objects[id.index];
}

inline ID add() {
ID id;
id.inner_id = _next_inner_id++;
if (_freelist == UINT_MAX) {
Object o;
id.index = _objects.size();
o.id = id;
_objects.push_back(o);
} else {
id.index = _freelist;
_freelist = _objects[_freelist].next;
}
return id;
}

inline void remove(ID id) {
Object &o = lookup(id);
o.id.inner_id = UINT_MAX;
o.next = _freelist;
_freelist = id.index;
}
};

This is a lot better than the STL solution. Insertion and removal is O(1). Lookup is just array indexing, which means it is very fast. In a quick-and-dirty-don’t-take-it-too-seriously test this was 40 times faster than the STL solution. In real-life it all depends on the actual usage patterns, of course.

The only part of this solution that is not an improvement over the STL version is that our ID structs have increased from 32 to 64 bits.

There are things that can be done about that. For example, if you never have more than 64 K objects live at the same time, you can get by with 16 bits for the index, which leaves 16 bits for the inner_id. Note that the inner_id doesn’t have to be globally unique, it is enough if it is unique for that index slot. So a 16 bit inner_id is fine if we never create more than 64 K objects in the same index slot.

If you want to go down that road you probably want to change the implementation of the free list slightly. The code above uses a standard free list implementation that acts as a LIFO stack. This means that if you create and delete objects in quick succession they will all be assigned to the same index slot which means you quickly run out of inner_ids for that slot. To prevent that, you want to make sure that you always have a certain number of elements in the free list (allocate more if you run low) and rewrite it as a FIFO. If you always have N free objects and use a FIFO free list, then you are guaranteed that you won’t see an inner_id collision until you have created at least N * 64 K objects.

Of course you can slice and dice the 32 bits in other ways if you hare different limits on the maximum number of objects. You have to crunch the numbers for your particular case to see if you can get by with a 32 bit ID.

Packed Array


One drawback with the approach sketched above is that since the index is exposed externally, the system cannot reorganize its objects in memory for maximum performance.

The holes are especially troubling. At some point the system probably wants to loop over all its objects and update them. If the object array is nearly full, no problem, But if the array has 50 % objects and 50 % holes, the loop will touch twice as much memory as necessary. That seems suboptimal.

We can get rid of that by introducing an extra level of indirection, where the IDs point to an array of indices that points to the objects themselves:


This means that we pay the cost of an extra array lookup whenever we resolve the ID. On the other hand, the system objects are packed tight in memory which means that they can be updated more efficiently. Note that the system update doesn’t have to touch or care about the index array. Whether this is a net win depends on how the system is used, but my guess is that in most cases more items are touched internally than are referenced externally.

To remove an object with this solution we use the standard trick of swapping it with the last item in the array. Then we update the index so that it points to the new location of the swapped object.

Here is an implementation. To keep things interesting, this time with a fixed array size, a 32 bit ID and a FIFO free list.

typedef unsigned ID;

#define MAX_OBJECTS 64*1024
#define INDEX_MASK 0xffff
#define NEW_OBJECT_ID_ADD 0x10000

struct Index {
ID id;
unsigned short index;
unsigned short next;
};

struct System
{
unsigned _num_objects;
Object _objects[MAX_OBJECTS];
Index _indices[MAX_OBJECTS];
unsigned short _freelist_enqueue;
unsigned short _freelist_dequeue;

System() {
_num_objects = 0;
for (unsigned i=0; i<MAX_OBJECTS; ++i) {
_indices[i].id = i;
_indices[i].next = i+1;
}
_freelist_dequeue = 0;
_freelist_enqueue = MAX_OBJECTS-1;
}

inline bool has(ID id) {
Index &in = _indices[id & INDEX_MASK];
return in.id == id && in.index != USHRT_MAX;
}

inline Object &lookup(ID id) {
return _objects[_indices[id & INDEX_MASK].index];
}

inline ID add() {
Index &in = _indices[_freelist_dequeue];
_freelist_dequeue = in.next;
in.id += NEW_OBJECT_ID_ADD;
in.index = _num_objects++;
Object &o = _objects[in.index];
o.id = in.id;
return o.id;
}

inline void remove(ID id) {
Index &in = _indices[id & INDEX_MASK];

Object &o = _objects[in.index];
o = _objects[--_num_objects];
_indices[o.id & INDEX_MASK].index = in.index;

in.index = USHRT_MAX;
_indices[_freelist_enqueue].next = id & INDEX_MASK;
_freelist_enqueue = id & INDEX_MASK;
}
};

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ