000

Index Labels

Fixing memory issues in Lua

.
Garbage collection can be both a blessing and a curse. On the one hand, it frees you from manually managing memory. This saves development time, reduces bugs, and avoids tricky decisions about objects' ownerships and lifetimes.

On the other hand, when you do run into memory issues (and you most likely will), they can be a lot harder to diagnose and fix, because you don't have detailed control over how memory is allocated and freed.

In this post I'll show some techniques that you can use to address memory issues in Lua (and by extension, in other garbage collected languages).

All Lua memory issues essentially boil down to one of two things:

Lua uses too much memory

On consoles memory is a precious resource and sometimes Lua is just using too much of it. The root cause can either be memory leaks or badly constructed/bloated data structures.

Garbage collection is taking too long

Too much garbage collection is (not surprisingly) caused by having too much garbage. The code must be rewritten so that it generates less garbage.


Let's look at each issue in turn and see how we can address it.

1. Lua uses too much memory


The first step towards plugging leaks and reducing memory use is to find out where the memory is going. Once we know that, the problems are usually quite easy to fix.

So how do we find out where the memory is going? One way would be to add tracing code to the lua_Alloc() function, but actually there is a much simpler method that doesn't require any C code and is more in line with Lua's dynamic nature. We can just use Lua to count all the objects in the runtime image:

function count_all(f)

local seen = {}

local count_table

count_table = function(t)

if seen[t] then return end

f(t)

seen[t] = true

for k,v in pairs(t) do

if type(v) == "table" then

count_table(v)

elseif type(v) == "userdata" then

f(v)

end

end

end

count_table(_G)

end


Here we just start with the global table _G and recursively enumerate all subtables and userdata. For each object that we haven't seen before, we call the enumeration function f. This will enumerate all the objects in the Lua runtime that can be reached from _G. Depending on how you use Lua you may also want to add some code for enumerating objects stored in the registry, and recurse over metatables and function upvalues to make sure that you really count all the objects in the runtime.

Once you have a function for enumerating all your Lua objects, there are lots of useful things you can do. When it comes to plugging leaks and reducing memory usage I find one of the most useful things is to count the number of objects of each type:

function type_count()

local counts = {}

local enumerate = function (o)

local t = type_name(o)

counts[t] = (counts[t] or 0) + 1

end

count_all(enumerate)

return counts

end


Here type_name() is a function that returns the name of an object's type. This function will depend on what kind of class/object system you use in your Lua runtime. One common approach is to have global class objects that also act as metatables for objects:

-- A class

Car = {}

Car.__index = Car



-- A method

function Car.honk(self)

print "toot"

end



-- An object

local my_car = {}

setmetatable(my_car, Car)


In this case, the type_name() function could look something like this:

global_type_table = nil

function type_name(o)

if global_type_table == nil then

global_type_table = {}

for k,v in pairs(_G) do

global_type_table[v] = k

end

global_type_table[0] = "table"

end

return global_type_table[getmetatable(o) or 0] or "Unknown"

end

The object count usually gives you a good idea of where your memory problems lie. For example, if the number of AiPathNode objects constantly rises, you can conclude that you are somehow leaking those objects. If you have 200 000 GridCell objects you should write a smarter grid implementation.

You can also use this enumeration technique to pinpoint problems further if necessary. For example, if you are hunting for leaks, you can rewrite the count_all() function so that it keeps track of the sub keys where an object were found. In this way, you might see that the AiPathNode objects can be accessed through paths like:

_G.managers.ai_managers.active_paths[2027]


Then you know that the source of the leak is that paths never get removed from the active_paths table.

2. Garbage collection is taking too long


Garbage collection is a very cache unfriendly task that can have a significant performance impact. This is especially frustrating since garbage collection doesn't really do anything. Well, it lets your gameplay programmers work faster and with fewer bugs, but when you have reached the optimization phase you tend to forget about that and just swear at the slow collector.

Lua's default garbage collection scheme is not adapted for realtime software and if you just run it straight up you will get lots of disturbing frame rate hitches. As has already been mentioned in previous #AltDevBlogADay articles, it is better to use a step size of 0 and just run the garbage collector for a certain number of milliseconds every frame:

OpaqueTimeValue start = time();

while (milliseconds_elapsed_since(start) < milliseconds_to_run)

lua_gc(L, LUA_GCSTEP, 0);


Note that you can run this garbage collection on any thread, as long as Lua is not running at the same time, so you might be able to offset some of the cost by running the garbage collection on a background thread while your main thread is doing something non-Lua related.

How much time should you spend on garbage collection? A tricky question. If you spend too little, the garbage will grow and you will eventually run out of memory. If you spend too much, you are wasting precious milliseconds.

My preferred solution is to use a feedback mechanism. I dynamically adjust the garbage collection time so that the amount of garbage always stays below 10 % of the total Lua memory. If the garbage goes above that, I increase the collection time. If the garbage goes below, I decrease the collection time. As with all feedback mechanisms is a good idea to plot the curves for memory use and garbage collection time as you tweak the feedback parameters. That way you can verify that the system behaves nicely and that the curves settle down in a stable state rather than going into oscillation.

Choosing the figure 10 % is a balance between memory use and performance. If you choose a higher value, your program will use more memory (because of the increased amount of garbage). On the other hand, you can give the garbage collection a smaller time slice. I've chosen a pretty low number, because on consoles, memory is always precious. If you are targeting a platform with more memory, you can go higher.

Let's compute how much time we need to spend on garbage collection to stay below a certain fraction 0 <= a <= 1 of garbage. Assume that we complete a full garbage collection cycle (scan all Lua memory) in time t. The amount of garbage generated in that time will be:

t g

Where g is the garbage/s created by the program. To make sure that we stay below a fraction a we must have (where m is the total memory used by the program, including the garbage):

t g <= a m

Assume that we sweep s bytes/s. Then the time t required to sweep the entire memory m will be:

t = m / s

Combining the two equations we get:

s <= g / a

So the amount of garbage collection work we need to do per frame is directly proportional to the amount of garbage / s generated by the program and inversely proportional to the fraction of garbage we are willing to accept. (Note that interestingly, m cancels out of the equation.)

So, if we are willing to spend more memory, we can address garbage collection problems by increasing a. But since a can never be higher than 1, there are limits to what we can achieve in this way. A better option, that doesn't cost any memory, is to reduce g -- the amount of garbage generated.

In my experience, most garbage generation problems are "easy mistakes" from sloppy and thoughtless programming. Once you know where the problems are, it is usually not hard to rewrite the code so that garbage generation is avoided. Some useful refactoring techniques are:

  • Update the fields in an existing table instead of creating a new one.

  • Return a reference to an object member rather than a copy. Copy only when needed.

  • Write functions so that they take and return values rather than tables to avoid temporary tables. I. e., make_point(2,3) rather than make_point({2,3}).

  • If you need temporary objects, find a way of reusing them so you don't need to create so many of them.

  • Avoid excessive string concatenation.


Of course a key requirement for this to work is that your Lua-to-C bindings are written so that they don't generate garbage. Otherwise your poor gameplay programmer has no chance. In my opinion, it should be possible to call any C function in a "garbage free" way (though you may choose to also have a more convenient path that does generate garbage). For tips on how to write garbage free bindings, see my previous posts on Lightweight Lua Bindings.

To reduce garbage generation, you need to be able to pinpoint where in the program the garbage is being generated. Luckily, that is not difficult.

Once the game has reached a stable state (total Lua memory doesn't grow or shrink) any allocation made can be considered garbage, because it will soon be freed again (otherwise the Lua memory would keep growing). So to find the garbage all you have to do is to add some tracing code to lua_Alloc that you can trigger when you have reached a stable state.

You can use lua_getstack() to get the current Lua stack trace from inside lua_Alloc and use a HashMap to count the number of allocations associated with each stack trace. If you then sort this data by the number of allocations it is easy to identify the "hotspots" that are generating the most garbage. A gameplay programmer can go through this list and reduce the amount of garbage generation using the tips above.

The code may look something like this:

struct TraceEntry {

TraceEntry() : alloc_count(0), alloc_bytes(0) {}

String trace;

unsigned alloc_count;

unsigned alloc_bytes;

};

HashMap<uint64, TraceEntry> _traces;



if (_tracing_allocs) {

lua_Debug stack[5] = {0};

int count = lua_debugger::stack_dump(L, stack, 5);

uint64 hash = murmur_hash_64(&stack[0], sizeof(lua_Debug)*count);

TraceEntry &te = _traces[hash];

te.alloc_count += 1;

te.alloc_bytes += (new_size - old_size);

if (te.trace.empty())

lua_debugger::stack_dump_to_string(L, te.trace);

}


In my experience, spending a few hours on fixing the worst hot spots indicated by the trace can reduce the garbage collection time by an order of magnitude.

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ