000

Index Labels

Lightweight Lua Bindings

.
A scripting language, such as Lua, can bring huge productivity gains to a game project. Quick iterations, immediate code reloads and an in-game console with a read-eval-print-loop are invaluable tools. A less obvious benefit is that introducing a scripting language creates a clear dividing line between "engine" and "gameplay" code with a well defined API between them. This is often good for the structure of the engine, at least if you intend to use it for more than one game.

The main drawback is of course performance. It is a scary thing to discover late in a project that the game is slow because the script is doing too much. Especially since bad script performance cannot always be traced back to bugs or bad algorithms. Sure, you get those as well, but you can also get problems with "overall slowness" that cannot easily be traced back to specific bottlenecks or hot spots. There are two reasons for this. First, the slowness of script code compared to C, which means that everything just takes more time. And second, the fact that gameplay code tends to be "connection" rather than "compute" heavy which means there is less to gain from algorithmic improvements.

Part of this is a management issue. It is important to monitor the script performance (on the slowest target platform) throughout the production so that measures can be taken early if it looks like it will become a problem. But in this article I will focus on the technical aspects, specifically the C-to-Lua bindings.

It is important to note that when I am talking about performance in this article I mean performance on current generation consoles, because that is where performance problems occur. PC processors are much more powerful (especially when running virtual machines, which tend to be brutal to the cache). The extra cores on the consoles don't help much with script execution (since scripts are connection heavy, they are hard to multithread). And the PC can run LuaJIT which changes the game completely.

This may of course change in future generation consoles. If anyone from Sony or Microsoft is reading this, please add support for JITting to your next generation ventures.

Lua bindings


Apart from optimizing the Lua interpreter itself, optimizing the bindings between Lua and C is the best way of achieving a general performance improvement, since the bindings are used whenever Lua calls some function in the C code which in a typical game happens constantly.

The standard way of binding an object on the C side to Lua is to use a full userdata object. This is a heap allocated data blob with an associated metatable that can be used to store the methods of the object. This allows the user to make a call like:

game_world:get_camera():set_position(Vector3(0,0,0))

In many ways, this is the easiest and most convenient way of using objects in Lua, but it comes with several performance problems:

  • Any time an object is passed from C to Lua, such as the camera in get_camera()
    or the vector created by Vector3(0,0,0), memory for the object must be allocated on the heap. This can be costly.
  • All the heap objects must be garbage collected by Lua. Calls such as get_camera() create temporary objects that must be collected at some later time. The more garbage we create, the more time we need to spend in garbage collection.
  • Making use of many heap allocated objects can lead to bad cache performance. When the C side wants to use an object from Lua, it must first fetch it from Lua's heap, then (in most cases) extract an object pointer from its data and look up the object in the game heap. So each time there is an extra cache miss.
  • The colon method call syntax world:get_camera() actually translates to something like (I've simplified this a bit, see the Lua documentation for details) world._meta_table["get_camera"](world). I.e., it creates an extra table lookup operation for every call.

We can get rid of the first two issues by caching the Lua objects. I.e. instead of creating a new Lua object every time get_camera() is called, we keep a reference to the object on the Lua side and just look it up and return it every time it is requested. But this has other disadvantages. Managing the cache can be tricky and it creates a lot more objects in the Lua heap, since the heap will now hold every object that has ever been touched by Lua. This makes garbage collection take longer and the heap can grow uncontrollably during the play of a level, depending on which objects the player interacts with. Also, this doesn't solve the issue with objects that are truly temporary, such as Vector3(0,0,0).

A better option is to use what Lua calls light userdata. A light userdata is essentially just a C pointer stored in Lua, with no additional information. It lives on the Lua stack (i.e. not the heap), does not require any memory allocations, does not participate in garbage collection and does not have an associated metatable. This addresses all our performance problems, but introduces new (not performance-related) issues:

  • Since the objects don't have metatables we cannot use the convenient colon syntax for calling their methods.
  • Light user data objects do not carry any type information, they are just raw pointers. So on the C side we have no way of telling if we have been called with an object of the right type.
  • Lifetime management is trickier since objects do not have destructors and are not garbage collected. How do we manage dangling pointers in Lua?

Colon syntax


With light user data we cannot use the colon syntax to look up methods. Instead we must call global functions and pass in the objects as parameters. But we can still make sure to organize our methods nicely, i.e., put all the functions that operate on World objects in a table called World. It might then look something like this:

Camera.set_position(World.get_camera(game_world), Vector3(0,0,0))

If you are used to the object oriented style this way of writing can feel awkward at first. But in my experience you get accustomed to it quite quickly. It does have some implications which are not purely syntactical though. On the plus side, this style of writing makes it easy to cache the method lookups for better performance:

local camera_set_position = Camera.set_position
local world_get_camera = World.get_camera

camera_set_position(world_get_camera(game_world), Vector3(0,0,0))

This transformation is so simple that you can easily write a script that performs it on your entire code base.

The main drawback is that we are no longer doing dynamic method lookup, we are calling one specific C method. So we can't do virtual inheritance with method overrides. To me that is not a big problem because firstly, I think inheritance is vastly overrated as a design concept, and secondly, if you really need virtual calls you can always do the virtual method resolution on the C side and get the benefits while still having a static call in Lua.

Type checking


For full userdata we can check the type by looking at the metatable. The Lua library function luaL_checkudata provides this service. Since light userdata is just a raw pointer to Lua, no corresponding functionality is offered. So we need to provide the type checking ourselves. But how can we know the type of an arbitrary C pointer?

An important thing to notice is that type checking is only used for debugging. We only need to know if a function has been called with the right arguments or not. So we don't actually need to know the exact type of the pointer, we just need to know if it points to the thing we expect. And since this is only used for bug detection, it doesn't matter if we get a few false positives. And it is fine if the test takes a few cycles since we can strip it from our release builds.

Since we just need to know "is the object of this type" we can make test different for each type. So for each type, we can just pick whatever test fits that type best. Some possibilities are:

  • Store a known four byte type marker at the start of the object's memory. To verify the type, just dereference the pointer and check that the first four bytes match the expected marker. (This is the method I use most frequently.)
  • Keep a hash table of all objects of the specified type and check if it is there.
  • For objects that are allocated from a pool, check that the pointer lies within the range of the pool.

Object lifetimes


There are two approaches you can take to ownership of objects in the Lua interface. They can either be Lua owned and destroyed by the garbage collector or they can be owned by the C side and destroyed by explicit function calls. Both approaches have their advantages, but I usually lean towards the latter one. To me it feels more natural that Lua explicitly creates and destroys cameras with World.destroy_camera() rather than cameras just popping out of existence when the garbage collector feels they are no longer used. Also, since in our engine, Lua is an option, not a requirement, it makes more sense to have the ownership on the C side.

With this approach you have the problem that Lua can hold "dangling pointers" to C objects, which can lead to nasty bugs. (If you took the other approach, you would have the opposite problem, which is equally nasty.)

Again, for debugging purposes, we would want to do something similar to what we did with the type information. We would like to know, in debug builds, if the programmer has passed us a pointer to a dead object, so that we can display an error message rather than exhibit undefined behavior.

This is a trickier issue and I haven't found a clear cut solution, but here are some of the techniques I have used:

  • Clear out the marker field of the object when it is freed. That way if you attempt to use it later you will get a type error. Of course, checking this can cause an access violation if the memory has been returned to the system.
  • For objects that get created and destroyed a lot, such as particles or sound instances, let Lua manage them by IDs rather than by raw pointers.
  • Keep a hash table of all known live objects of the type.
  • Let Lua point to the object indirectly through a handle. Use some bits of the pointer to locate the handle and match the rest to a counter in the handle so that you can detect if the handle has been released and repurposed for something else.

Conclusions


Using light instead of full userdata does make things more inconvenient. But as we have seen, there are tricks that help overcome many of these inconveniences.

We still haven't looked at truly the temporary objects, such as Vector3(0,0,0). In my next article I will discuss what can be done about them.

(This has also been posted to the BitSquid blog.)

Blog Archive

Labels

.NET Programming 2D Drafting 3D 3D Animation 3D Art 3D Artist 3D CAD 3D Character 3D design 3D design tutorial 3D Drafting 3D effects 3D Engineering 3D Lighting 3D Materials 3D Modeling 3D models 3D Navigation 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Layers Additive Manufacturing Advanced CAD features Advanced Modeling advanced plot styles Advanced Sketch AEC Technology AEC Tools AEC Workflow affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in 3D AI in Architecture AI in CAD AI in CNC AI in design AI in engineering AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Strategies AI Tips AI Tools AI Tricks AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-Assisted Workflow AI-enhanced AI-powered templates Animation Animation Curves Animation Layers animation pipeline animation tips Animation Tutorial Animation workflow annotation Annotation Scaling annotation standards Annotations AR Architectural AI Architectural CAD architectural design Architectural Drawing architectural drawings architectural modeling architectural preservation Architectural Productivity architectural visualization Architecture architecture CAD architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture projects architecture software architecture technology architecture tools Architecture Visualization Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model assembly techniques Asset Management augmented reality Auto Rig Maya AutoCAD AutoCAD advice AutoCAD AI tools AutoCAD API AutoCAD automation AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Blocks AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Guide AutoCAD Hub AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD scripting AutoCAD Scripts AutoCAD Sheet Set tips AutoCAD Teaching AutoCAD Techniques AutoCAD Templates AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automate automate drawing updates Automate Printing automate publishing automate repetitive tasks Automated Design automated publishing Automated Sheets Automation Automation in AutoCAD Automation Tools Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics batch drawing validation Batch Plot Batch Plotting Beginner beginner CAM Beginner Tips beginner tutorial beginners guide Bend Tools Best Practices Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM Tips BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Boolean Operations Building design Building Design Software Building Efficiency Building Maintenance building modeling Building Systems Building Technology business tools ByLayer CAD CAD API CAD assembly CAD Automation CAD best practices CAD Blocks CAD CAM CAD collaboration CAD commands CAD comparison CAD consistency CAD Customization CAD Data Management CAD Design CAD drawing checks CAD efficiency CAD errors CAD Evolution CAD file management CAD File Size Reduction CAD Integration CAD Learning CAD libraries CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD organization CAD Oversight CAD plugins CAD Productivity CAD project management CAD Projects CAD Rendering CAD Scripting CAD Security CAD Sheet Management CAD sheet sets CAD Shortcuts CAD Skills CAD software CAD software 2026 CAD software training CAD standardization CAD standards CAD Tables CAD team CAD teams CAD technology CAD templates CAD Tips CAD Tools CAD Tracking CAD tricks CAD Tutorial CAD version control CAD workflow CAD workflow optimization CAD workflows CAM CAM Best Practices CAM for beginners CAM Optimization CAM simulation CAM strategies CAM Tips CAM tutorial CAM Workflow car design software Case Study central hub Central Hub Solutions centralized commands centralized documentation centralized management Centralized Sheet Set centralizing CAD CEO Guide CG Workflow CGI CGI design Character Animation Character Rig Character Rigging cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloth Simulation Cloud CAD cloud CAD storage Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-Based CAD Cloud-First CNC CNC machining collaboration collaboration in CAD Collaboration Tools Collaborative CAD collaborative design Collaborative Drafting color management command abbreviations Complex Projects Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud construction documentation construction drawings construction management Construction Phases Construction Planning Construction Project Construction Projects Construction Scheduling Construction Technology construction tools construction tracking Contractor contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams creative tools CTB CTB STB Custom Hatch custom scripts custom tool palettes Custom visual styles Cutting Parameters Cybersecurity Data Backup Data Extraction data management Data Protection Data Reference Data Security Data Shortcut deadline tracking Demolition Design Design Automation Design Career Design Collaboration Design Comparison Design consistency Design Coordination Design Documentation design efficiency Design Engineering design errors Design Hacks Design Innovation design management design optimization Design Options Design Oversight design productivity design review Design Reviews design revisions Design Rules design software design software tips design standardization design standards Design Teams Design Technology design templates design tips Design Tools design tracking Design Workflow design-to-construction Designer designer hacks Designer Tools Designer Workflow Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital Drafting digital drawing Digital engineering digital fabrication Digital Library Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimension styles dimensioning Disaster Recovery document management Document Organization Documentation drafting drafting automation Drafting Efficiency Drafting productivity Drafting Shortcuts Drafting Standards Drafting Tips drafting tools Drafting Workflow Drawing Drawing Accuracy Drawing Automation drawing consistency drawing management Drawing Organization drawing revisions Drawing standards drawing templates drawing tips Dref DWG files DXF Export Dynamic Block Dynamic Block AutoCAD Dynamic Blocks dynamic data management Dynamic doors Dynamic windows Dynamics Dynamics Simulation Dynamo Dynamo automation early stage design eco design editing commands Efficiency efficient CAD efficient project management Electrical Systems Emerging Features Energy Analysis energy efficiency Energy Simulation Engineering Engineering Automation engineering CAD engineering data Engineering Design Engineering Documentation Engineering Drawing engineering drawings engineering efficiency Engineering Innovation Engineering Productivity engineering projects Engineering Skills engineering software Engineering Technology engineering tips engineering tools Engineering Tools 2025 Engineering Workflow Error Reduction Excel Export Workflow Express Tools External Reference Fabric Simulation facial animation Facial Rigging Facility Management Families Fast Structural Design faster delivery Field Documentation file auditing File Management file naming File Optimization File Recovery Fire Flame flange tips flat pattern Fluid Effects Fluid Simulation Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 guide Fusion 360 Tips Fusion 360 tutorial Future of Design Future Skills Game Design Game Development Game Effects Gamification Generative Design Geospatial Data GIS Global design teams global illumination GPU Acceleration grading optimization Graph Editor Green Architecture green building Green Technology Grips Handoff Hatch Patterns HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design Hub Workflows HVAC HVAC Design Tools HVAC Engineering HVAC Optimization Hydraulic Modeling IK/FK iLogic Import Workflow Industrial Design Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight Intelligent AutoCAD Hub Intelligent automation Intelligent Design intelligent modeling Intelligent Repetition Control Intelligent Sheet Management Intelligent Sheet Sets intelligent tools Intelligent Workflow Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan layer conventions Layer Management Layer Organization layer standards layouts Learn AutoCAD Legacy CAD Library components Licensing light techniques Lighting Lighting and shading Lighting Techniques lineweight Linked Models Liquid Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency machining productivity Macros maintenance command Manage multiple projects from a single hub with a centralized project management system that improves collaboration Management manual plotting manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals master sheet index Material Creation Material Libraries Maya Maya Animation Maya character animation Maya lighting Maya Python Maya Rigging Maya Shader Maya Tips Maya tutorial Maya Workflow measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP MEP Modeling Mesh-to-BIM Metal Fabrication Metal Structure milestone tracking modal analysis Model Clarity Model Management Model Optimization model space Modeling Secrets Modular Housing Monitoring Progress Motion capture Motion Design motion graphics motion simulation MotionBuilder Multi Office Workflow multi-axis machining Multi-Body Modeling Multi-Project Multi-Project Management Multi-User Environment multileader multiple sheet sets naming convention Navisworks Navisworks Best Practices nCloth Net Zero Design New Construction ObjectARX .NET API Open Source CAD Optimization Organization OVERKILL OVERKILL AutoCAD Override Layers Page Setup Palette paper space parametric assembly Parametric Components Parametric Constraints parametric design parametric family Parametric Modeling particle effects particle systems PDF PDF Export PDM system Personal Brand Phase Filters Phasing photorealism Photorealistic photorealistic render PlanGrid plot automation Plot Settings Plot Style Plot Style AutoCAD plot styles Plotting Plotting automation Plugin Tutorial Plumbing Design PM Tools point cloud Portfolio Post Construction Post-Processing Practice Drawing precision machining preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Preloaded families Presentation-ready visuals Printing Printing Quality Problem Solving Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Product Visualization Productivity productivity and workflow efficiency. productivity tips productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Professional Workflow progress management Project Accuracy project automation Project Collaboration project consistency Project Coordination project dashboard Project Documentation project efficiency Project Goals project management Project Management Tools project milestones Project Monitoring project organization Project Oversight project planning Project Progress project quality project timeline project tracking Project Visualization project workflow PTC Creo Publish Drawings PURGE PURGE AutoCAD Rail Transit Rapid Prototyping Realism realistic rendering realistic scenes ReCap Redshift Shader reduce CAD errors reduce CAD file size Reduce Errors reduce manual updates Reducing redundancy Redundant Work Render Render Optimization Render Passes Render Quality Render Settings render tips Rendering rendering engine Rendering Engines Rendering Optimization rendering settings rendering software Rendering Techniques Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow repetition-free workflow repetitive drawing Repetitive Elements repetitive-free Reports Resizable Block restoration workflow Reusable Components Revision Control Revision Management Revision Tracking Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit plugin Revit Plugins Revit Scripting Revit skills Revit Standards Revit Strategies Revit Structure Revit Tags Revit Template Revit templates Revit Tips Revit tutorial Revit Workflow Ribbon Rigging Rigid Body robotics ROI Room planning save hours of work Save Time save time CAD Scale Autodesk Schedules screen Scripts Sculpting Secure Collaboration Sensor Data Shader Networks sheet management Sheet Metal Sheet Metal Design Sheet Metal Tricks Sheet organization sheet set Sheet Set Automation Sheet Set Efficiency Sheet Set fields Sheet Set Management Sheet Set Manager Sheet Set Optimization Sheet Set Organization Sheet Set Software Sheet Set Standards Sheet Set Tips Sheet Set Tools Sheet Sets sheet sets workflow Sheets shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart CAD smart CAD tools Smart City Smart Design smart dimensioning Smart Engineering Smart Factory Smart Infrastructur Smart Project Smart Sheet Management Smart Sheet Set Tools Smart Sheet Sets Smart Workflows Smoke Soft Body Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Space planning SSM standard part libraries Standardization Standardize standardized templates Startup Design static stress STB Steel Structure Design Stress-Free Structural Design Structural Modeling Structural Optimization subscription model Subscription Value surface finish Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline task management team collaboration Team Efficiency Team Productivity Team Projects team training guide technical documentation Technical Drawing technical support Template management Template Setup Template usage templates text settings text style Texture Mapping Texturing thermal analysis time efficiency Time Management time saving tools time savings time-saving time-saving tools Title Block title block automation Title Blocks Tool Libraries Tool Management Tool Palette Guide toolbar toolpath Toolpath Optimization Toolpaths Topography Track Track changes Troubleshooting Tutorial Tutorials Unfolding Techniques urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling version control VFX View Filters Viewport configuration viewports Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ