000

Index Labels

Collaboration and Merging

.
(We are looking for a tools programmer.)

Games are huge collaborative efforts, but usually they are not developed that way. Mostly, assets can only be worked on by one person at a time and need to be locked in version control to prevent conflicting changes. This can be a real time sink, especially for level design, but all assets would benefit from more collaborative workflows. As tool developers, it is time we start thinking seriously about how to support that.

Recently I faced this issue while doing some work on our localization tools. (Localization is interesting in this context because it involves collaboration over long distances -- a game studio in one country and a translation shop in another.) In the process I had a small epiphany: the key to collaboration is merging. When data merges nicely, collaborative work is easy. If you can't merge changes it is really hard to do collaboration well, no matter what methods you use.

Why databases aren't a magic solution

A central database can act as backend storage for a collaborative effort. But that, by itself, does not solve all issues of synchronization and collaboration.

Consider this: if you are going to use a database as your only synchronization mechanism then all clients will have to run in lockstep with the database. If you change something, you have to verify with the database that the change hasn't been invalidated by something done by somebody else, perform the change as a single transaction and then wait for the database to acknowledge it before continuing. Every time you change something, you will have to wait for this round trip to the database and the responsiveness of your program is now completely at its mercy.

Web applications have faced this issue for a long time and they all use the same solution. Instead of synchronizing every little change with the database, they gather up their changes and send them to the database asynchronously. This change alone is what have made "web 2.0" applications competitive with desktop software.

But once you start talking to the database asynchronously, you have already entered "merge territory". You send your updates to the server, they arrive at some later point, potentially after changes made by other users. When you get a reply back from the server you may already have made other, potentially conflicting, changes to your local data. Both at the server and in the clients, changes made by different users must be merged.

So you need merging. But you don't necessarily need a database. If your merges are robust you can just use an ordinary version control system as the backend instead of a database. Or you can work completely disconnected and send your changes as patch files. The technology you use for the backend storage doesn't matter that much, it is the ability to merge that is crucial.

A merge-based solution has another nice property that you don't get with a "lockstep database": the possibility of keeping a local changeset and only submitting it to others when it is "done". This is of course crucial for code (imagine keeping all your source files in constantly mutating Google Documents). But I think it applies to other assets as well. You don't want half-finished, broken assets all over your levels. An update/commit workflow is useful here as well.

Making assets mergable

If you have tried to merge assets in regular version control systems you will know that they usually don't do so well. The merge tool can mess up the JSON/XML structure, mangle the file in other ways or just plain fail (because of a merge conflict). All of these problems arise because the merge tool treats the data as "source code" -- a line-oriented text document with no additional structure. The reason for this is of course historic, version control systems emerged as a way of managing source code and then grew into other areas.

The irony of this is that source code is one of the hardest things to merge. It has complicated syntax and even more complicated semantics. Source code is so hard to merge that even humans with all their intelligency goodness find it taxing. In contrast, most assets are easy to merge, at least conceptually.

Take localization, for instance. The localization data is just a bunch of strings with translations for different languages. If one person has made a bunch of German translations, another person has made some Swedish translations and a third person has added some new source strings, we can merge all that without a hitch. The only time when we have any problem at all is if two people has provided different translations for the same string in the same language. We can solve such standoffs by just picking the most recent value. (Optionally, we could notify the user that this happened by hilighting the string in the tool.)

Many other assets have a similar structure. They can be described as "objects-with-properties". For example, in a level asset the objects are the entities placed in the level and their properties are position, rotation, color, etc. All data that has this structure is easy to merge, because there are essentially just three types of operations you can perform on it: create an object, destroy an object and change a property of an object. All these operations are easy to merge. Again, the only problem is if two different users have changed the same property of the same object.

So when we try to merge assets using regular merge tools we are doing something rather silly. We are taking something that is conceptually very easy to merge, completely ignoring that and trying to merge it using rather complex algorithms that were designed for something completely different, something that is conceptually very hard to merge. Silly, when you think about it.

The solution to this sad state of affairs is of course to write custom merge tools that take advantage of the fact that assets are very easy to merge. Tools that understand the objects-with-properties model and know how to merge that.

A first step might be to write a merge program that understands XML or JSON files (the program in the link has some performance issues -- I will deal with that in my next available time slot) and can interpret them as objects-with-properties.

This only goes half the way though, because you will need some kind of extra markup in the file for the tool to understand it as a set of objects-with-properties. For example, you probably need some kind of id field to mark object identity. Otherwise you can't tell if a user has changed some properties of an old object or deleted the old object and created a new one. And that matters when you do the merge.

Instead of adding this extra markup, which can be a bit fragile, I think it is better to explicitly represent your data as objects-with-properties. I've blogged about this before, but since then I feel my thoughts on the subject have clarified and I've also had the opportunity to try it out in practice (with the localization tool). Such a representation could have the following key elements.

  • The data consists of a set of objects-with-properties.
  • Each object is identified by a GUID.
  • Each property is identified by a string.
  • The property value can be null, a bool, a double, a vector3, a quaternion, a string, a data blob, a GUID or a set of GUIDs.
  • The data has a root object with GUID 0.

We use a GUID to identify the object, since that means the ids of objects created by different users won't collide. GUID values are used to make links between objects. Note that we don't allow arrays, only sets. That is because array operations (move object from 5th place to 3rd place) are hard to merge. Set operations (insert object, remove object) are easy to merge.

Here is what a change set for creating a player entity in a level might look like using this model. (I have shortened the GUIDs to 2 bytes to make the example more readable.)

create #f341
change_key #f341 "entity-type" "player"
change_key #f341 "position" vector3(0,0,0)
add_to_set #0000 "entities" #f341

Note that the root object (which represents the level) has a property "entities" that contains the set of all entities in the level.

To merge two such change sets, you could just append one to the other. You could even use the change set itself as your data format, if you don't want to use a database backend (that is actually what I did for the localization tool).

I think most assets can be represented in the objects-with-properties model and it is a rather powerful way of making sure that they are mergable and collaboration-friendly. I will write all the new BitSquid tools with the object-with-properties model in mind and retrofit it into our older tools.

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ