000

Index Labels

Managing Coupling

.
(This post has also been posted to http://altdevblogaday.com/.)


The only way of staying sane while writing a large complex software system is to regard it as a collection of smaller, simpler systems. And this is only possible if the systems are properly decoupled.
Ideally, each system should be completely isolated. The effect system should be the only system manipulating effects and it shouldn’t do anything else. It should have its own update() call just for updating effects. No other system should care how the effects are stored in memory or what parts of the update happen on the CPU, SPU or GPU. A new programmer wanting to understand the system should only have to look at the files in the effect_system directory. It should be possible to optimize, rewrite or drop the entire system without affecting any other code.
Of course, complete isolation is not possible. If anything interesting is going to happen, different systems will at some point have to talk to one another, whether we like it or not.
The main challenge in keeping an engine “healthy” is to keep the systems as decoupled as possible while still allowing the necessary interactions to take place. If a system is properly decoupled, adding features is simple. Want a wind effect in your particle system? Just write it. It’s just code. It shouldn’t take more than a day. But if you are working in a tightly coupled project, such seemingly simple changes can stretch out into nightmarish day-long debugging marathons.
If you ever get the feeling that you would prefer to test an idea out in a simple toy project rather than in “the real engine”, that’s a clear sign that you have too much coupling.
Sometimes, engines start out decoupled, but then as deadlines approach and features are requested that don’t fit the well-designed APIs, programmers get tempted to open back doors between systems and introduce couplings that shouldn’t really be there. Slowly, through this “coupling creep” the quality of the code deteriorates and the engine becomes less and less pleasant to work with.
Still, programmers cannot lock themselves in their ivory towers. “That feature doesn’t fit my API,” is never an acceptable answer to give a budding artist. Instead, we need to find ways of handling the challenges of coupling without destroying our engines. Here are four quick ideas to begin with:
1. Be wary of “frameworks”.
By a “framework” I mean any kind of system that requires all your other code to conform to a specific world view. For example, a scripting system that requires you to add a specific set of macro tags to all your class declarations.
Other common culprits are:
  • Root classes that every object must inherit from
  • RTTI/reflection systems
  • Serialization systems
  • Reference counting systems
Such global systems introduce a coupling across the entire engine. They rudely enforce certain design choices on all subsystems, design choices which might not be appropriate for them. Sometimes the consequences are serious. A badly thought out reference system may prevent subsystems from multithreading. A less than stellar serialization system can make linear loading impossible.
Often, the motivation given for such global systems is that they increase maintainability. With a global serialization system, we just have to make changes at a single place. So refactoring is much easier, it is claimed.
But in practice, the reverse is often true. After a while, the global system has infested so much of the code base that making any significant change to it is virtually impossible. There are just too many things that would have to be changed, all at the same time.
You would be much better off if each system just defined its own save() and load() functions.
2. Use high level systems to mediate between low level systems.
Instead of directly coupling low level systems, use a high level system to shuffle data between them. For example, handling footstep sounds might involve the animation system, the sound system and the material system. But none of these systems should know about the others.
So instead of directly coupling them, let the gameplay system handle their interactions. Since the gameplay system knows about all three systems, it can poll the animation system for events defined in the animation data, sample the ground material from the material system and then ask the sound system to play the appropriate sound.
Make sure that you have a clear separation between this messy gameplay layer, that can poke around in all other systems, and your clean engine code that is isolated and decoupled. Otherwise there is always a risk that the mess propagates downwards and infects your clean systems.
In the BitSquid Tech we put the messy stuff either in Lua or in Flow (our visual scripting tool, similar to Unreal’s Kismet). The language barrier acts as a firewall, preventing the spread of the messiness.
3. Duplicating code is sometimes OK!
Avoiding duplicated code is one of the fundamentals of software design. Entities should not be needlessly multiplied. But there are instances when you are better off breaking this rule.
I’m not advocating copy-paste-programming or writing complicated algorithms twice. I’m saying that sometimes people can get a little overzealous with their code reuse. Code sharing has a price that is not always recognized, in that it increases system coupling. Sometimes a little judiciously applied code duplication can be a better solution.
An typical example is the String class (or std::string if you are thusly inclined). In some projects you see the String class used almost everywhere. If something is a string, it should use the Stringclass, the reasoning seems to be. But many systems that handle strings do not need all the features that you find in your typical String class: locales, find_first_of(), etc. They are fine with just aconst char *strcmp() and maybe one custom written (potentially duplicated) three-line function. So why not use that, the code will be much simpler and easier to move to SPUs.
Another culprit is FixedArray a. Sure, if you write int a[5] instead you will have to duplicate the code for bounds checking if you want that. But your code can be understood and compiled without fixed_array.h and template instantiation.
And if you have any method that takes a const Vector &v as argument you should probably take const T *begin, const T *end instead. Now you don’t need the vector.h header, and the caller is not forced to use a particular Vector class for storage.
A final example: I just wrote a patching tool that manipulates our bundles (aka pak-files). That tool duplicates the code for parsing the bundle headers, which is already in the engine. Why? Well, the tool is written in C# and the engine in C++, but in this case that is kind of beside the point. The point is that sharing that code would have been a significant effort.
First, it would have had to be broken out into a separate library, together with the related parts of the engine. Then, since the tool requires some functionality that the engine doesn’t (to parse bundles with foreign endianness) I would have to add a special function for the tool, and probably a #define TOOL_COMPILE since I don’t want that function in the regular builds. This means I need a special build configuration for the tool. And the engine code would forever be dirtied with the TOOL_COMPILE flag. And I wouldn’t be able to rearrange the engine code as I wanted in the future, since that might break the tool compile.
In contrast, rewriting the code for parsing the headers was only 10 minutes of work. It just reads a vector of string hashes. It's not rocket science. Sure, if I ever decide to change the bundle format, I might have to spend another 10 minutes rewriting that code. I think I can live with that.
Writing code is not the problem. The messy, complicated couplings that prevent you from writing code is the problem.
4. Use IDs to refer to external objects.
At some point one of your systems will have to refer to objects belonging to another system. For example, the gameplay layer may have to move an effect around or change its parameters.
I find that the most decoupled way of doing that is by using an ID. Let’s consider the alternatives.
Effect *, shared_ptr
A direct pointer is no good, because it will become invalid if the target object is deleted and the effect system should have full control over when and how its objects are deleted. A standardshared_ptr won’t work for the same reason, it puts the life time of Effect objects out of the control of the effect system.
Weak_ptr, handle
By this I mean some kind of reference-counted, indirect pointer to the object. This is better, but still too strongly coupled for my taste. The indirect pointer will be accessed both by the external system (for dereferencing and changing the reference count) and by the effect system (for deleting the Effect object or moving it in memory). This has the potential for creating threading problems.
Also, this construct kind of implies that external systems can dereference and use the Effectwhenever they want to. Perhaps the effect system only allows that when its update() loop is not running and want to assert() that. Or perhaps the effect system doesn’t want to allow direct access to its objects at all, but instead double buffer all changes.
So, in order to allow the effect system to freely reorganize its data and processing in any way it likes, I use IDs to identify objects externally. The IDs are just an integers uniquely identifying an object, that the user can throw away when she is done with them. They don’t have to be “released” like aweak_ptr, which removes a point of interaction between the systems. It also means that the IDs are PODs. We can copy and move them freely in memory, juggle them in Lua and DMA them back-and-forth to our heart’s content. All of this would be a lot more complicated if we had to keep reference counts.
In the system we need a fast way of mapping IDs back to objects. Note that std::map is not a fast way! But there are a number of possibilities. The simplest is to just use a fixed size array with object pointers:
Object *lookup[MAX_OBJECTS];
If your system has a maximum of 4096 objects, use 12 bits from the key to store an index into this array and the remaining 20 bits as a unique identifier (i.e., to detect the case when the original object has been deleted and a new object has been created at the same index). If you need lots of objects, you can go to a 64 bit ID.
That's it for today, but this post really just scratches the surface of decoupling. There are a lot of other interesting techniques to look at, such as events, callbacks and “duck typing”. Maybe something for a future entry...

Blog Archive

Labels

.NET Programming 2D Drafting 3D Animation 3D Art 3D Artist 3D design 3D effects 3D Engineering 3D Materials 3D Modeling 3D models 3D presentation 3D Printing 3D rendering 3D scanning 3D scene 3D simulation 3D Sketch Inventor 3D Texturing 3D visualization 3D Web App 3ds Max 4D Simulation ACC Adaptive Clearing adaptive components Add-in Development Additive Manufacturing Advanced CAD features Advanced Modeling AEC Technology AEC Tools affordable Autodesk tools AI AI animation AI Assistance AI collaboration AI Design AI Design Tools AI Experts AI for Revit AI Guide AI in CAD AI in CNC AI in design AI in Manufacturing AI in Revit AI insights AI lighting AI rigging AI Tips AI Tools AI troubleshooting AI workflow AI-assisted AI-assisted rendering AI-enhanced Animation animation pipeline animation tips Animation workflow annotation AR architectural design architectural modeling architectural preservation architectural visualization Architecture architecture design Architecture Engineering Architecture Firm Architecture Productivity architecture software architecture technology Architecture Workflow Arnold Renderer Arnold Shader Artificial Intelligence As-Built Model Asset Management augmented reality AutoCAD AutoCAD advice AutoCAD API AutoCAD Basics AutoCAD Beginner AutoCAD Beginners AutoCAD Civil 3D AutoCAD Civil3D AutoCAD commands AutoCAD efficiency AutoCAD Expert Advice AutoCAD features AutoCAD File Management AutoCAD Layer AutoCAD Layers AutoCAD learning AutoCAD print settings AutoCAD productivity AutoCAD Teaching AutoCAD Techniques AutoCAD tips AutoCAD tools AutoCAD training. AutoCAD tricks AutoCAD Tutorial AutoCAD workflow AutoCAD Xref Autodesk Autodesk 2025 Autodesk 2026 Autodesk 3ds Max Autodesk AI Autodesk AI Tools Autodesk Alias Autodesk AutoCAD Autodesk BIM Autodesk BIM 360 Autodesk Certification Autodesk Civil 3D Autodesk Cloud Autodesk community forums Autodesk Construction Cloud Autodesk Docs Autodesk Dynamo Autodesk features Autodesk for Education Autodesk Forge Autodesk FormIt Autodesk Fusion Autodesk Fusion 360 Autodesk help Autodesk InfraWorks Autodesk Inventor Autodesk Inventor Frame Generator Autodesk Inventor iLogic Autodesk Knowledge Network Autodesk License Autodesk Maya Autodesk mistakes Autodesk Navisworks Autodesk news Autodesk plugins Autodesk productivity Autodesk Recap Autodesk resources Autodesk Revit Autodesk Software Autodesk support ecosystem Autodesk Takeoff Autodesk Tips Autodesk training Autodesk tutorials Autodesk update Autodesk Upgrade Autodesk Vault Autodesk Video Autodesk Viewer Automated Design Automation Automation Tutorial automotive design automotive visualization Backup Basic Commands Basics Batch Plot Beginner Beginner Tips beginner tutorial beginners guide Big Data BIM BIM 360 BIM Challenges BIM collaboration BIM Compliance BIM Coordination BIM Data BIM Design BIM Efficiency BIM for Infrastructure BIM Implementation BIM Library BIM Management BIM modeling BIM software BIM Standards BIM technology BIM tools BIM Trends BIM workflow Block Editor Block Management Block Organization Building Design Software Building Maintenance building modeling Building Systems Building Technology ByLayer CAD CAD API CAD assembly CAD Automation CAD Blocks CAD CAM CAD commands CAD comparison CAD Customization CAD Data Management CAD Design CAD errors CAD Evolution CAD File Size Reduction CAD Integration CAD Learning CAD line thickness CAD management CAD Migration CAD mistakes CAD modeling CAD Optimization CAD plugins CAD Productivity CAD Rendering CAD Security CAD Skills CAD software CAD software 2026 CAD software training CAD standards CAD technology CAD Tips CAD Tools CAD tricks CAD Tutorial CAD workflow CAM car design software Case Study CEO Guide CGI design Character Rig cinematic lighting Civil 3D Civil 3D hidden gems Civil 3D productivity Civil 3D tips civil design software civil engineering Civil engineering software Clash Detection Class-A surfacing clean CAD file cleaning command client engagement Cloud CAD Cloud Collaboration Cloud design platform Cloud Engineering Cloud Management Cloud Storage Cloud-First CNC CNC machining collaboration command abbreviations Complex Renovation concept car conceptual workflow Connected Design construction Construction Analytics Construction Automation Construction BIM Construction Cloud Construction Planning Construction Scheduling Construction Technology contractor tools Contractor Workflow Contraints corridor design Cost Effective Design cost estimation Create resizable blocks Creative Teams CTB STB Custom visual styles Cutting Parameters Cybersecurity Data Backup data management Data Protection Data Reference Data Security Data Shortcut Design Automation Design Career Design Collaboration Design Comparison Design Coordination design efficiency Design Engineering Design Hacks Design Innovation design optimization Design Options design productivity design review Design Rules design software design software tips Design Technology design tips Design Tools Design Workflow design-to-construction Designer Designer Tools Digital Art Digital Assets Digital Construction Digital Construction Technology Digital Content Digital Design Digital engineering digital fabrication Digital Manufacturing digital marketing digital takeoff Digital Thread Digital Tools Digital Transformation Digital Twin Digital Twins digital workflow dimension dimensioning Disaster Recovery drafting Drafting Efficiency Drafting Shortcuts Drafting Standards Drafting Tips Drawing Drawing Automation drawing tips Dref Dynamic Block Dynamic Block AutoCAD Dynamic Blocks Dynamic doors Dynamic windows Dynamo Dynamo automation early stage design eco design editing commands Electrical Systems Emerging Features Energy Analysis energy efficiency Engineering Engineering Automation engineering data Engineering Design Engineering Innovation Engineering Productivity Engineering Skills engineering software Engineering Technology engineering tools Engineering Tools 2025 Engineering Workflow Excel Export Workflow Express Tools External Reference facial animation Facial Rigging Facility Management Families Fast Structural Design Field Documentation File Optimization File Recovery Flame flange tips flat pattern Forge Development Forge Viewer FreeCAD Fusion 360 Fusion 360 API Fusion 360 tutorial Future of Design Future Skills Game Development Gamification Generative Design Geospatial Data GIS Global design teams global illumination grading optimization green building Green Technology Grips Handoff HDRI health check Healthcare Facilities heavy CAD file Heavy CAD Files heritage building conservation hidden commands Hospital Design HVAC HVAC Design Tools HVAC Engineering Hydraulic Modeling IK/FK iLogic Import Workflow Industry 4.0 Infrastructure infrastructure design Infrastructure Monitoring Infrastructure Planning Infrastructure Technology InfraWorks innovation Insight intelligent modeling Interactive Design interactive presentation Interior Design Inventor Inventor API Inventor Drawing Template Inventor Frame Generator Inventor Graphics Issues Inventor IDW Inventor Tips Inventor Tutorial IoT ISO 19650 joints Keyboard Shortcuts keyframe animation Keyframe generation Landscape Design Large Projects Laser Scan Layer Management Layer Organization Learn AutoCAD Legacy CAD Licensing light techniques Lighting and shading Lighting Techniques Linked Models Machine Learning Machine Learning in CAD Machine Optimization Machining Efficiency maintenance command Management manufacturing Manufacturing Innovation Manufacturing Technology Mapping Technology marketing visuals Material Creation Maya Maya character animation Maya lighting Maya Shader Maya Tips Maya tutorial measurement Mechanical Design Mechanical Engineering Media & Entertainment MEP Modeling Mesh-to-BIM Metal Structure modal analysis Model Management Model Optimization Modeling Secrets Modular Housing Motion capture motion graphics motion simulation MotionBuilder Multi Office Workflow Multi-User Environment multileader Navisworks Navisworks Best Practices Net Zero Design ObjectARX .NET API Open Source CAD Organization OVERKILL OVERKILL AutoCAD Page Setup Palette Parametric Components parametric design parametric family Parametric Modeling particle effects particle systems PDF PDM system Personal Brand Phasing PlanGrid Plot Settings Plot Style Plot Style AutoCAD Plotting Plugin Tutorial Plumbing Design point cloud Portfolio Post Construction Post-Processing Practice Drawing preconstruction workflow predictive analysis predictive animation Predictive Maintenance Predictive rigging Prefabrication Presentation-ready visuals Printing Printing Quality Procedural animation procedural motion Procedural Rig Procedural Textures Product Design Product Development product lifecycle product rendering Productivity productivity tools Professional 3D design Professional CAD Professional Drawings professional printing Professional Tips Project Documentation project efficiency project management Project Management Tools Project Visualization PTC Creo PURGE PURGE AutoCAD Rail Transit Rapid Prototyping realistic rendering ReCap Redshift Shader reduce CAD file size Render Render Passes Render Quality Render Settings Rendering rendering engine Rendering Engines Rendering Optimization rendering software Rendering Tips Rendering Workflow RenderMan Renewable Energy Renovation Project Renovation Workflow Reports Resizable Block restoration workflow Revit Revit add-ins Revit API Revit automation Revit Best Practices Revit Collaboration Revit Documentation Revit Family Revit integration Revit MEP Revit Performance Revit Phasing Revit Plugins Revit Scripting Revit skills Revit Standards Revit Template Revit Tips Revit tutorial Revit Workflow Ribbon Rigging robotics ROI Scale Autodesk Schedules screen Sculpting Secure Collaboration Sensor Data Shader Networks Sheet Metal Design Sheet Metal Tricks Sheet Set Manager shortcut keys Shortcuts Siemens NX Simulation simulation tools Sketch Sketching Tricks Small Firms Smart Architecture Smart Block Smart Building Design Smart City Smart Design Smart Engineering Smart Factory Smart Infrastructur Software Compliance software ecosystem Software Management Software Trends software troubleshooting Software Update Solar Energy Solar Panels SolidWorks Startup Design static stress Steel Structure Design Structural Optimization subscription model Subscription Value Surface Modeling sustainability sustainable design Sustainable Manufacturing system performance T-Spline team training guide Technical Drawing technical support Template Setup text style Texture Mapping Texturing thermal analysis Time Management time saving tools Title Blocks toolbar Toolpath Optimization Toolpaths Topography Troubleshooting Tutorial Tutorials urban planning User Interface (UI) UV Mapping UV Unwrap V-Ray Vault Best Practices Vault Lifecycle Vault Mistakes Vector Plotting vehicle modeling VFX Viewport configuration Virtual Environments virtual reality visual effects visualization workflow VR VR Tools VRED Water Infrastructure Water Management Weight Painting What’s New in Autodesk Wind Energy Wind Turbines Workbook workflow Workflow Automation workflow efficiency Workflow Optimization Workflow Tips Worksets Worksharing Workspace XLS Xref Xrefs เขียนแบบ